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BACKGROUND: Prescribed agricultural burning is a common land management practice, but little is known about the health
effects from the resulting smoke exposure.
OBJECTIVE: To examine the association between smoke from prescribed burning and cardiorespiratory outcomes in the U.S. state
of Kansas.
METHODS: We analyzed a zip code-level, daily time series of primary cardiorespiratory emergency department (ED) visits for
February–May (months when prescribed burning is common in Kansas) in the years 2009–2011 (n= 109,220). Given limited
monitoring data, we formulated a measure of smoke exposure using non-traditional datasets, including fire radiative power and
locational attributes from remote sensing data sources. We then assigned a population-weighted potential smoke impact factor
(PSIF) to each zip code, based on fire intensity, smoke transport, and fire proximity. We used Poisson generalized linear models to
estimate the association between PSIF on the same day and in the past 3 days and asthma, respiratory including asthma, and
cardiovascular ED visits.
RESULTS: During the study period, prescribed burning took place on approximately 8 million acres in Kansas. Same-day PSIF was
associated with a 7% increase in the rate of asthma ED visits when adjusting for month, year, zip code, meteorology, day of week,
holidays, and correlation within zip codes (rate ratio [RR]: 1.07; 95% confidence interval [CI]: 1.01, 1.13). Same-day PSIF was not
associated with a combined outcome of respiratory ED visits (RR [95% CI]: 0.99 [0.97, 1.02]), or cardiovascular ED visits (RR [95% CI]:
1.01 [0.98, 1.04]). There was no consistent association between PSIF during the past 3 days and any of the outcomes.
SIGNIFICANCE: These results suggest an association between smoke exposure and asthma ED visits on the same day. Elucidating
these associations will help guide public health programs that address population-level exposure to smoke from prescribed
burning.
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INTRODUCTION
Wildland fire smoke is associated with irritation of the respiratory
system, exacerbations of chronic diseases such as asthma and
chronic obstructive pulmonary disease, and premature mortality
[1, 2]. Exposure to smoke is particularly hazardous for individuals
with preexisting respiratory and cardiovascular disease [3].
Large-scale prescribed agricultural burning, a contributor to

wildland fire smoke emissions, is a common land management
practice. Prescribed burning of invasive vegetation and old growth
returns nutrients back to the soil and can be beneficial to the
surviving plants and landscapes [4]. It is used to reduce fuel
loading in forested and agricultural areas and hence potentially
prevent wildfires, and also used to enhance native vegetation, and

maintain ecosystems [4, 5]. The smoke from prescribed burning
contains numerous air pollutants including particulate matter,
carbon monoxide, nitrogen oxides, and volatile organic com-
pounds [5]. The known health effects of inhalation of air pollution
include detrimental effects on the cardiovascular and respiratory
systems [6].
Although the impact of prescribed burning on air quality is well

described [7–11], research on its impact on health is limited [7, 12].
Results from the few studies on the health effects of prescribed
burning suggest adverse health impacts from this practice. One
study conducted in the southeastern United States estimated a
modest increase in emergency department (ED) visits for asthma
due to exposure to smoke from prescribed burning [13]. A second
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study conducted in this region used information from burn permits
and concentration-response functions to estimate that prescribed
burning is associated with asthma ED visits, hospital admission for
respiratory reasons, and premature death [14]. In a different region
of the United States, a study in the Pacific Northwest used a health
impact assessment tool and observed associations between
prescribed burning and an increase in respiratory symptoms,
bronchitis, lost days of work, and death [15].
The Flint Hills region of Kansas and northern Oklahoma is a

tallgrass prairie where approximately 2 million acres are cleared by
prescribed agricultural burning each spring [16]. Burning in this
region promotes the growth of desired grass species and controls
woody species growth ultimately resulting in increased cattle
weight gain [17, 18]. These burns are a substantial contributor to
air pollution [19, 20]. Levels of air pollution that exceed the
National Ambient Air Quality Standards have been recorded in
Kansas and nearby states following prescribed burning activities
[18]. In 2017, it was estimated that prescribed burning was
responsible for 44% of primary fine particulate matter (PM2.5)
emissions in Kansas, compared with only 14% nationally [21].
Despite elevated air pollution levels, the health effects of smoke
exposure resulting from prescribed burning in Kansas is currently
unknown. This study sought to determine the impact of
prescribed agricultural burning on cardiorespiratory ED visits in
Kansas.

MATERIALS/SUBJECTS AND METHODS
We conducted a time series study in the state of Kansas using a
measure of smoke exposure formulated from non-traditional
datasets and daily zip-code level cardiorespiratory ED visits from
2009 to 2011.
Limited air quality monitoring data were available for the region

and time period of interest. Additionally, we found no accessible
information on the dates and locations of prescribed burns. In the
absence of this information, we used remote-sensing data and
model-based predictions to calculate a “potential smoke impact
factor” (PSIF; described below) and used the PSIF to characterize
population-level exposure to smoke from agricultural burning. We
downloaded burn-related information from the National Aero-
nautics and Space Administration’s (NASA) Fire Information for
Resource Management System [22]. Specifically, we obtained
information from NASA’s Moderate Resolution Imaging Spectro-
radiometer aboard the Terra and Aqua satellites, which identify
fire pixels that have had one or more fires. From these 1×1
kilometer (km) pixels, we extracted information on maximum fire
radiative power (FRP) for each day in our spatial and temporal
domains. Typically, FRP is used to ascertain emission rates and
factors [23–26], but for this assessment we used it to approximate
fire intensity.
Initially, we considered using a distance-weighted measure of

FRP for each block group without considering other meteorologic
factors. However, as highlighted by Waller and colleagues [27],
distance-weighting alone will not capture the true “exposure
potential” as air pollutant impacts may depend not just on

distance to emission sources but also on other factors such as
wind characteristics. Hence, population-exposure resulting from
fires with differing fire intensities was estimated factoring in both
smoke dispersion and proximity to each fire location. Smoke
dispersion from the location of each individual fire was assumed
to be heavily influenced by wind speed and direction as
agricultural burning happens over grasslands with no significant
elevation differences.
We combined information on fire intensity with estimates of

surface meteorological parameters generated from the North
American Land Data Assimilation System Phase 2 (NLDAS) model
[28]. First, we created eight wind sector designations of 45° each
based on a continuous measure of wind direction (i.e., 22.5°–67.4°,
67.5°–112.4°, 112.5°–157.4°, 157.5°–202.4°, 202.5°–247.4°,
247.5°–292.4°, 292.5°–337.4°, 337.5°–22.4°). Using hourly wind
characteristics, we calculated daily wind probability and speed
for each of the eight wind-sector designations, for each fire pixel
and separately for each U.S. Census block group. We also created a
distance matrix, providing the distance between each fire pixel
and block group in Kansas. We limited the radius of influence for
each fire to block groups within 100 km. After using wind direction
and location to identify block groups that potentially could receive
smoke from a fire due to congruent wind direction, we used the
inverse of the squared distances between centroids of each block
group and fire pixel as weights to calculate a daily smoke
exposure metric for each block group. Of note, using a distance-
weighted approach is common in environmental health, especially
to assign pollution impacts from a specific source [27, 29, 30]. We
then generated population-weighted estimates of this potential
smoke impact factor (PSIF) at the zip code level from block group
level estimates to align with the geographic resolution of the
available health data.
We evaluated the PSIF metric using the limited available air

quality monitoring data. During the period of this analysis, air
quality data were available on PM2.5 and ozone from 4 air quality
monitors, coarse particulate matter (PM10) from 2 air quality
monitors, and carbon monoxide from 1 air quality monitor. PM2.5

was sampled every 3 to 6 days; all other pollutants were sampled
daily. The monitors were located in the cities of Wichita, Peck,
Topeka, and Olathe; all in Eastern Kansas. We matched PSIF data
with air monitoring data by zip code and estimated Pearson’s
correlation coefficient (r).
We analyzed a zip code-level, daily time series of primary

cardiorespiratory ED visits for the years 2009–2011. We examined
three outcomes: (1) asthma ED visits (2) respiratory ED visits
including asthma, wheeze, chronic obstructive pulmonary disease,
pneumonia, and upper respiratory tract infections, and (3)
cardiovascular ED visits including ischemic heart disease, dys-
rhythmia, congestive heart failure, and ischemic stroke (Interna-
tional Classification of Diseases, Ninth Revision, Clinical
Modification [ICD-9-CM] codes listed in Table 1). Daily counts of
ED visits for each outcome were calculated for each zip code in
Kansas from individual-level data. We used zip code of patient
residence for aggregating ED visits; ED visits were excluded if the
patient resided outside the state of Kansas. ED data were obtained

Table 1. Distribution and primary ICD-9-CM codes for asthma, respiratory, and cardiovascular emergency department visits, February–May,
2009–2011.

Outcome ICD-9-CM codesa Total Visits per day

Mean (SD) Minimum Maximum

Asthma 493 9,824 27.3 (7.3) 7 55

Respiratory 460–466, 477, 480–486, 491–492, 493, 496, 786.07 69,620 193.4 (49.8) 109 350

Cardiovascular 410–414, 427, 428, 433–437, 440, 443–445, 447 39,600 110.0 (48.5) 25 286
aIncluding extensions.
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from the Kansas Hospital Association (KHA) and the Veterans
Health Administration. On average, ED data were available from
100 KHA hospitals each year, representing approximately 73% of
KHA member hospitals in Kansas during this period. Data were
obtained from all Veterans Affairs hospitals in Kansas.
We used Poisson generalized linear models that accounted for

overdispersion to estimate the association between PSIF (same-
day [lag 0] and 3-day moving average [lag 0–2], i.e., same day and
two previous days) and asthma, respiratory, and cardiovascular ED
visits. Analyses were restricted to the months when prescribed
burning is common in Kansas (February–May) and to zip codes
with at least one primary asthma ED visit and one primary
cardiovascular ED visit during the analysis months. The distribu-
tion of PSIF was highly skewed towards 0 and was modeled in two
ways: (1) a binary variable (presence vs. absence of smoke
exposure) and (2) a 4-level variable (zero vs. tertiles of non-zero
exposure). All models were implemented using generalized
estimating equations with a first-order autoregressive correlation
structure to allow for correlation within zip code. Covariate control
for temporal and meteorologic factors was based on a previously
developed model for estimating the association between air
pollution and cardiorespiratory outcomes [31]. Adjusted models
controlled for parametric cubic splines with monthly knots, year,
zip code, day of week, holidays, cubic polynomials for lag 0
maximum temperature, cubic polynomials for lag 0 mean dew
point, and cubic polynomials for lag 1–2 moving average
minimum temperature (for models assessing 3-day moving
average PSIF exposure).
For models with results indicating a health effect of prescribed

burning, we also considered a negative control exposure (NCE) to
evaluate residual confounding, model miss-specification and

measurement error. In these analyses, we added PSIF 2 days in
the future to the model and assessed its association with the
outcome of interest. This negative control approach uses the fact
that a future exposure cannot cause past health outcomes to
assess potential biases [32–34]. We used PSIF 2 days in the future
(rather than the typical 1 day used in this approach) because there
is a morning satellite pass that may identify fires that started late
on the previous day and were hence not captured in the previous
day’s exposure estimate.
All analyses were conducted in SAS 9.4 (SAS Institute, Cary, NC,

USA) and R 4.02 [35]. This activity was reviewed by the Centers for
Disease Control and Prevention (CDC) and was conducted
consistent with applicable federal law and CDC policy (See e.g.,
45C.F.R. part 46, 21C.F.R. part 56; 42 U.S.C. §241(d); 5 U.S.C. §552a;
44 U.S.C. §3501 et seq.).

RESULTS
During the study years (2009–2011), prescribed burning took
place on approximately 8 million acres in Kansas [36]. PSIF levels
were highest in April, the month when prescribed burning was
most frequent (Table 2, Fig. 1). Levels were highest in the Eastern
part of the state where the Flint Hills region is located (Fig. 1).
Comparing the PSIF to the limited available air quality monitoring
data, there was moderate overall correlation between PSIF and
PM2.5 (r= 0.33) with correlation at individual air monitors ranging
from a minimum of r= 0.16 to a maximum of r= 0.49. Poor
correlation was observed between PSIF and other air pollutants,
such as, ozone, PM10, and carbon monoxide.
Between February–May, 2009–2011, 9,824 primary asthma ED

visits, 69,620 primary respiratory ED visits, and 39,600 primary
cardiovascular ED visits were identified in the health dataset
(Table 1). Of these ED visits, 98% were to KHA hospitals with the
remaining 2% to Veterans Affairs hospitals. The average patient
age was 41 years old; 34.7% of ED visits were to individuals under
the age of 18 (Table 3). Approximately half of visits were to
patients of female sex (49.2%). The majority of visits were to
patients of White or Black race (72.3% and 10.7% respectively) and
non-Hispanic or Latino ethnicity (81.0%). Counts of asthma ED
visits peaked in the spring and fall months (Fig. 2).
Having a non-zero PSIF level was associated with a 7% increase

in the rate of asthma ED visits on the same day in both unadjusted
and adjusted models (rate ratio [95% confidence interval (CI)]: 1.07

Table 2. Distribution of potential smoke impact factor levels in zip
codes used in the analysis, by month.

Month Mean Percentiles

50th 75th 90th

February 407.9 0 0 15.2

March 1729.1 0 96.7 1448.5

April 4,509.2 0 393.9 4,776.3

May 280.2 0 0 17.0

Fig. 1 Quintiles of Potential Smoke Impact Factor (PSIF) levels, Kansas, February–May 2010. The darkest color indicates the highest PSIF
quintile; white indicates no data.
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[1.02, 1.13], 1.07 [1.01, 1.13] respectively) (Table 4). When
comparing tertiles of exposure to a reference group of non-
exposure, adjusted rates of asthma ED visits on the same day were
3% higher in the first tertile, 10% higher in the second tertile, and
7% higher in the third tertile (rate ratio [95% CI]: 1.03 [0.93, 1.15],
1.10 [1.01, 1.19], 1.07 [0.99, 1.15] respectively) than rates in the
reference group of no exposure (PSIF= 0). Having a non-zero
three-day moving average PSIF level was associated with a 2%
increase in the rate of asthma ED visits when adjusting for

covariates (rate ratio [95% CI]: 1.02 [0.97, 1.08]) (Table 4). When
comparing tertiles of 3-day moving average exposure to a
reference group of non-exposure, the pattern was not monotonic;
adjusted rates of asthma ED visits were 4% higher in the first
tertile, 2% lower in the second tertile, and 6% higher in the third
tertile (rate ratio [95% CI]: 1.04 [0.96, 1.12], 0.98 [0.92, 1.05], 1.06
[0.99, 1.04], respectively) than rates in the reference group of no
exposure.
For the analysis between PSIF modeled as a binary variable and

asthma, we evaluated the association of a NCE with the outcome,
adding PSIF 2 days in the future to the model. We found no
meaningful association between the future variable and asthma
(results not shown) and inclusion of the future variable did not
change the association between same-day PSIF and asthma. For
this model to converge, we omitted zip code control for which
had little impact in the main analyses.
When examining respiratory ED visits including asthma (Table 1),

we found no evidence of an association with PSIF level. The
adjusted rate ratios for both same-day PSIF level and 3-day
moving average PSIF level were close to the null value of 1 (rate
ratio [95% CI]: 0.99 [0.97, 1.02], 0.99 [0.97, 1.01], respectively) as
were most of the rate ratios when comparing tertiles of exposure
to a reference group of no exposure (Table 4).
For cardiovascular ED visits, we found no consistent evidence of

an association with PSIF level. Having a non-zero PSIF level was
associated with a 1% increase in the adjusted rate of ED visits on
the same day (rate ratio [95% CI]: 1.01 [0.98, 1.04]), and having a
non-zero 3-day moving average PSIF level was associated with a
3% decrease in the adjusted rate of ED visits (rate ratio [95% CI]:
0.97 [0.94, 0.99]). When comparing tertiles of exposure to a
reference group of no exposure, results were mixed, with some
results suggesting an increased rate of ED visits with increasing
level of PSIF and other results suggesting a decreased rate of ED
visits with increasing level of PSIF (Table 4).

DISCUSSION
Our results suggest an association between smoke exposure
during the months when prescribed burning is common (i.e.,
February–May) and asthma ED visits on the same day. Although
negative controls are less than 100% sensitive for detection of bias
due to confounding or model misspecification, the results of our
NCE analyses showed no indication of major modeling or
confounding issues impacting this result. We found no consistent
evidence of an association between smoke exposure and all
respiratory ED visits or cardiovascular ED visits. This study adds to

Table 3. Characteristics of asthma, respiratory, and cardiovascular
emergency department visits, February–May, 2009–2011.

Characteristic Frequency (%)

Age, in years

<18 37,882 (34.7)

18–39 13,968 (12.8)

40–54 11,358 (10.4)

55–64 12,149 (11.1)

65–74 13,248 (12.1)

75+ 20,614 (18.9)

Unknown 1 (0.0)

Sex

Female 53,748 (49.2)

Male 55,471 (50.8)

Unknown 1 (0.0)

Race

American Indian/Alaska Native 335 (0.3)

Native Hawaiian/Pacific Islander 20 (0.0)

Asian 1445 (1.3)

Black 11,656 (10.7)

White 78,926 (72.3)

More than one race 892 (0.8)

Other 10,455 (9.6)

Unknown 5491 (5.0)

Ethnicity

Hispanic/Latino 7583 (6.9)

Non-Hispanic/Latino 88,499 (81.0)

Unknown 13,138 (12.0)

Fig. 2 Primary respiratory, cardiovascular, and asthma ED visits by month, Kansas 2009–2011. Shading identifies visits in February–May
that were used in the analysis. Open circles indicate respiratory ED visits, shaded triangles indicate cardiovascular ED visits, and shaded circles
indicate asthma ED visits.
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the limited previous research suggesting adverse health impacts
of smoke exposure resulting from prescribed burning.
Public health officials and land managers can take steps to limit

exposure to smoke from prescribed burning. During seasons of
prescribed burning activities, health departments can educate
residents about protecting themselves from smoke exposure
using some of the same actions recommended during episodes of
wildfire smoke, including monitoring local air quality and keeping
indoor air clean [3]. These precautions are particularly important
for individuals at the highest risk for health impacts from smoke
such as those with preexisting respiratory and cardiovascular
disease. For land managers, the Kansas Flint Hills Smoke
Management Plan details fire management practices that can be
used to help limit smoke from prescribed burns [18]. These
practices include using environmental and air quality conditions
to inform when to burn and reducing fuel loads prior to burning.
In the Flint Hills Region of Kansas, expanding the timing of
prescribed burning to help diminish resulting smoke concentra-
tions may also be an option [37, 38].
This study expands the scope of literature on the health

effects of prescribed burning by being conducted in the state of
Kansas and by using a different approach to estimating
exposure to smoke from prescribed burning. Combining multi-
ple environmental datasets to create the PSIF metric allowed us
to estimate zip-code level exposure to smoke from prescribed
burning in the absence of robust monitoring data. The
combination of remote sensing data with surface wind
characteristics allowed us to identify communities that are
impacted by smoke from these fires. Because burning in Kansas
occurs on a large-scale and in grasslands with a flat terrain,
remote sensing data is expected to perform well at capturing
prescribed burns in Kansas. However, our PSIF metric will not
capture smoke exposure resulting from secondary formation

and may misclassify exposure resulting from long-range trans-
port of smoke and air pollution from sources that are outside of
Kansas. Improving record keeping on the location and timing of
prescribed burns along with increasing air quality monitoring in
areas with prescribed burning could help reduce any potential
exposure misclassification in future studies addressing the
health impact of burning activities.
We should consider several potential limitations in addition to

creating exposure measures from non-traditional data sources.
Although exposure to and the impacts of smoke from prescribed
burning may be larger in certain demographic groups, we did
not examine potential differential effects by race, ethnicity, or
socioeconomic factors. By examining combined outcomes of
respiratory and cardiovascular illnesses, we may have masked
true associations with individual respiratory or cardiovascular
conditions. Using zip code as the spatial unit of analysis has
limitations because zip codes do not align directly with the
spatial unit of data collection for health or environmental
factors. We observed low correlations between the PSIF metric
and air quality monitoring data; the limited availability of
monitoring data prevented us from determining how represen-
tative these results may be for the full study region. We
estimated ambient smoke exposure which may differ from
personal smoke exposure due to behavior modifications such as
avoiding going outside on days with poor air quality or using
indoor air filtration systems. Although we adjusted for a wide
range of potential confounders, given the large number of
factors that can impact cardiorespiratory exacerbations it is
possible that uncontrolled confounding may have impacted
findings. Examples of potential confounders that were not
accounted for include additional meteorological factors, area-
level socioeconomic status, and land use factors. A previous
study in the state of Georgia observed higher levels of social

Table 4. Association between estimated smoke exposure and cardiorespiratory ED visits, Kansas 2009–2011.

Asthma ED visits Respiratory ED visits Cardiovascular ED visits

Unadjusted RR
(95% CI)

Adjusted RR
(95% CI)

Unadjusted RR
(95% CI)

Adjusted RR
(95% CI)

Unadjusted RR
(95% CI)

Adjusted RR
(95% CI)

Lag 0

Binary
exposurea

1.07 (1.02, 1.13) 1.07 (1.01, 1.13) 0.97 (0.95, 1.00) 0.99 (0.97, 1.02) 1.04 (1.01, 1.07) 1.01 (0.98, 1.04)

4-level exposureb

No exposure Reference Reference Reference Reference Reference Reference

Tertile 1 0.92 (0.82, 1.03) 1.03 (0.93, 1.15) 0.92 (0.88, 0.96) 0.96 (0.92, 1.00) 1.03 (0.97, 1.09) 1.03 (0.98, 1.08)

Tertile 2 1.10 (1.01, 1.20) 1.10 (1.01, 1.19) 1.00 (0.97, 1.03) 1.01 (0.98, 1.05) 1.08 (1.03, 1.13) 1.05 (1.00, 1.09)

Tertile 3 1.13 (1.05, 1.22) 1.07 (0.99, 1.15) 0.98 (0.95, 1.01) 1.00 (0.97, 1.03) 1.00 (0.96, 1.05) 0.97 (0.93, 1.01)

3-day moving average

Binary
exposurea

1.04 (0.98, 1.09) 1.02 (0.97, 1.08) 0.96 (0.94, 0.99) 0.99 (0.97, 1.01) 0.95 (0.92, 0.98) 0.97 (0.94, 0.99)

4-level exposurec

No exposure Reference Reference Reference Reference Reference Reference

Tertile 1 0.94 (0.86, 1.03) 1.04 (0.96, 1.12) 0.95 (0.91, 0.99) 1.00 (0.97, 1.03) 0.93 (0.88, 0.98) 0.99 (0.95, 1.03)

Tertile 2 0.97 (0.90, 1.04) 0.98 (0.92, 1.05) 0.95 (0.92, 0.98) 0.99 (0.96, 1.02) 0.99 (0.95, 1.04) 0.97 (0.94, 1.00)

Tertile 3 1.14 (1.07, 1.22) 1.06 (0.99, 1.14) 0.99 (0.95, 1.02) 0.99 (0.96, 1.02) 0.93 (0.89, 0.97) 0.94 (0.91, 0.98)

All models adjust for correlation within zip code. Adjusted models also control for time splines with monthly knots, year, zip code, day of week, holidays, cubic
polynomials for lag 0 maximum temperature, cubic polynomials for lag 0 mean dew point, and cubic polynomials for lag 1–2 moving average minimum
temperature (for models assessing 3-day moving average PSIF exposure).
aBinary exposure is calculated as zero (reference) vs. non-zero exposure.
bLag 0 4-level exposure is calculated as no exposure (PSIF= 0) vs. tertiles of non-zero exposure (tertile 1 [0 < PSIF ≤ 84.3], tertile 2 [84.3 < PSIF ≤ 1135.5], tertile 3
[1135.5 < PSIF]).
c3-day moving average 4-level exposure is calculated as no exposure (PSIF= 0) vs. tertiles of non-zero exposure (tertile 1 [0 < PSIF ≤ 41.3], tertile 2 [41.3 <
PSIF ≤ 630.43], tertile 3 [630.43 < PSIF]).
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vulnerability in areas impacted by prescribed burning [14]. If the
same association exists in Kansas, social vulnerability could
potentially confound the results of this study given the known
disparities in cardiorespiratory outcomes by components of
social vulnerability such as socioeconomic status and race
[39, 40].
The data for this study are for the years 2009 to 2011.

Nevertheless, prescribed burning is still a common practice in
Kansas. During the years of this study, an average of approxi-
mately 2.7 million acres were burned in prescribed fires each year
in the Flint Hills region of Kansas. Comparatively, between 2019
and 2021, in the same region, an average of approximately 2.4
million acres were burned annually [36]. Given the similarities in
acreage burned, we anticipate that our results are relevant to the
health impacts of prescribed burning in Kansas today.
Prescribed burning is a common agricultural practice in Kansas and

in many other geographic locations. In this study using ED data from
across Kansas and a novel metric of smoke exposure, we observed an
association between smoke during the months in which prescribed
burning is common in Kansas and asthma ED visits. Continuing to
elucidate the impact of smoke from prescribed burning on health will
help guide public health programs that address population-level
smoke exposure. Educating the public on protecting themselves from
the smoke of prescribed burning and ensuring that land managers
take steps to limit smoke production from these burns may be
important steps to help limit health impacts.

DATA AVAILABILITY
The computing code can be obtained by contacting the corresponding author. The
data are not available because they include medical information that cannot be
released.
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