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• Over half of annual fire detections in the
Flints Hills happen in March and April

• Annual acres burned in the area ranges
from 0.2 to 2 million acres.
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the area are burned annually.

• Strongest relationships between PM2.5

(carbon and K), O3, and fire activity
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Prescribed grassland fires in the Flint Hills region of central Kansas and northern Oklahoma are a common tool for
land management. Local to regional scale impacts on air quality from grassland fires in this region are not well un-
derstood,which is important as these types of prescribedfiresmay increase in the future to preserve broader areas of
native grasses in the central U.S. Routine air quality and deposition measurements from sites in and near the Flint
Hills were examined for coincident increases during periods of increased prescribed grassland fires. Prescribed fire
activity in this region was quantified using satellite detections and multiple publicly available data products of
area burned information. March and April comprise over half (41 to 93%) of all annual fire detections in the Flint
Hills region seen from satellites between 2007 and 2018 excluding drought years. Annual total fire detections in
this region range between 1 and 12 thousand and account for approximately 3% of all fire detections in the contig-
uous U.S. Annual acres burned ranged from 0.2 to 2 million acres based on U.S. EPA's National Emission Inventory,
which accounts for 4 to 38% of grasslands in the area. A comparison ofweekly standardized anomalies suggests a re-
lationship between periods of increased grasslandfire activity and elevated levels of PM2.5 organic carbon, elemental
carbon, and potassium. Daily 1-hr maximum ozone (O3), ammonia (NH3), sulfur dioxide (SO2), and oxidized nitro-
gen gases measured at Konza Prairie also had increased levels when prescribed grassland fire activity was highest.
This detailed characterization of prescribed fire activity in the Flint Hills and associated air quality impacts will ben-
efit future efforts to understand changes in atmospheric composition due to changing land management practices.
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1. Introduction

Wildland fire smoke is known to cause negative health effects in
humans (Reid et al., 2016). Further, certain groups are more susceptible
to wildland fire smoke exposure which can increase the likelihood of
negative health consequences. One of the regions in the U.S. identified
as more susceptible due to population traits is central and eastern Kan-
sas (Rappold et al., 2017). Prescribed burning in the Flint Hills region
of central Kansas and northern Oklahoma is done to preserve the grass-
land ecosystem through prevention of woody vegetation encroachment
(Towne and Craine, 2016). Reported estimates indicate the Flint Hills re-
gion includes over 6 million acres of grassland (Ratajczak et al., 2016;
Towne and Craine, 2016) with about half of that burned on a 3 year
(or less) cycle to maintain vegetative homogenization (Ratajczak et al.,
2016). Themost common types of grasses in this region include big blue-
stem (Andropogon gerardii), little bluestem (Schizachyrium scoparium),
Indian grass (Sorghastrum nutans), and cheatgrass (Bromus tectorum).

Grassland prescribed fires in this region are typically done each
spring season although the amount of acres burned varies from year
to year. Variability in burning depends largely on the presence or ab-
sence of drought (Mohler and Goodin, 2012). Drought years have less
prescribed fire activity due to less vegetation growth and concerns
about managing the spread of fire. Economic and cultural factors have
led to prescribed burning being done almost exclusively during the
spring season, but prescribed burns could be done throughout the
year to meet the same ecological and economic goals (Towne and
Craine, 2016; Weir and Scasta, 2017). Favorable burn conditions are
largely related to minimal recent rainfall (dry fuel) and lower wind
speeds that allow for better management of prescribed burns and pre-
vention of uncontrolled spread of fire (Kansas Department of Health
and Environment, 2010).

The state of Kansas has used air quality modeling to demonstrate
that emissions from grassland burning in the Flint Hills region can con-
tribute to ozone (O3) levels that exceed the National Ambient Air Qual-
ity Standard (NAAQS) in nearby urban areas including Wichita and
Kansas City (Kansas Department of Health and Environment, 2012). A
state smoke management plan has been developed by Kansas to mini-
mize burning duringweather conditions favorable to regional O3 forma-
tion (Kansas Department of Health and Environment, 2010). Grassland
burning in the Flint Hills may also impact regional PM2.5 monitors, but
no formal regulatory contribution demonstrations have been done
since this region has been well below the level of the particulate matter
less than 2.5 microns (PM2.5) NAAQS in recent decades.

Several studies have estimated O3 and PM2.5 impacts from pre-
scribed grassland fires in the Flint Hills. Source attribution statistical
models applied to 12 years (2002–2014) of routine speciated PM2.5

measurements at Tallgrass Prairie suggest grassland burning during
April contributes 42% of average PM2.5 for thatmonth at thatmonitor lo-
cation (Liu et al., 2016). Statistical analysis of acres burned and ambient
O3 in the Flint Hills region suggests that O3 levels tend to increase as
acres burned increases (Liu et al., 2018). Photochemical gridmodel sim-
ulations of grasslandburning in the Flint Hills also show local to regional
scale O3 and PM2.5 impacts, although these model simulations were
found to systematically overpredict both O3 and PM2.5 from grassland
burning in this region (Baker et al., 2016).

Here we build on these previous studies by using multiple satellite
fire detection and burned area products to provide more detailed as-
sessments of the spatial patterns of grassland fire activity in the Flint
Hills region. We also investigate the temporal variability of prescribed
fires in the region across scales (i.e. yearly, weekly, daily, and hourly)
to better understand how the size and timing of these fires may be
impacting local to regional scale air quality.

Finally, we examine howmeasurements of a wide range of chemical
species made at multiple types of air quality and deposition network
monitor locations in and near the Flint Hills vary during periods of in-
creased prescribed fire activity in the region. Our work extends the
analysis from previous assessments that focused on a single monitor lo-
cation in the Flint Hills ecoregion for O3 (Liu et al., 2018) and speciated
PM2.5 (Liu et al., 2016) impacts by includingmoremonitor locations and
additional pollutants including ammonia, sulfur dioxide (SO2), carbon
dioxide (CO2), wet deposited species including mercury, and aerosol
optical depth (AOD). The goal of this work is to inform future assess-
ments of the air quality impacts of prescribed grassland burning by 1)
illustrating which pollutants are most impacted by smoke from pre-
scribed grassland fires in the Flint Hills area, and 2) advancing scientific
understanding of how these impacts vary across spatial and temporal
scales.

2. Methods

2.1. Fire detections from satellite products

Fire detections aremade fromgeostationary andpolar orbiting satel-
lites using both shortwave infrared and visible imagery products made
available from the Hazard Mapping System (HMS) (Brey et al., 2017;
Hu et al., 2016). Fire detections are included in this analysis frommulti-
ple satellites reporting data from 2007 to 2018. Duplicate detections
were removed from the datasetwhen estimating daily totals. All fire de-
tections reportedwith amethod of detection as FDC (Fire Detection and
Characterization) were excluded from this analysis to best reflect
longer-term trends as this method was introduced as a Geostationary
Operational Environmental Satellite (GOES) satellite product in late
2017. The FDC algorithms (https://www.goes-r.gov/education/docs/fs_
fire.pdf) reported over twice as many fire detections as all other prod-
ucts combined in 2018 for the contiguous U.S. and the Flint Hills region.

Fire detections may be missed by satellites when masked by clouds
(Loría-Salazar et al., 2016) or when the size of the fires is below detec-
tion capability (Hu et al., 2016). Fires with short duration outside the
overpass window of polar orbiting satellites may also be undetected
and not reported. Fire detection analysis suggests prescribed grassland
fires in the Flint Hills are often b6 h in duration (Brey et al., 2017),
which means these smaller quick burning prescribed grassland fires
may be under-reported from polar orbiting satellite products.

2.2. Burned area products

Burned area was totaled for the Flint Hills region and mapped to a
common grid structure usingmultiple sources of data often used to sup-
port retrospective and operational smoke modeling. Burned area was
extracted from three data sources: the Fire INventory from NCAR
(FINN; (Wiedinmyer et al., 2011)), the Global Fire Emission Database
(GFED4s; (Van Der Werf et al., 2017)) and U.S. EPA's National Emission
Inventory (NEI; (U.S. Environmental Protection Agency, 2018)). FINN
estimates global burned area at ~1 km resolution using active fire
detections from the Moderate Resolution Imaging Spectroradiometer
(MODIS) combined with biomass coverage and fuel type assumptions
from the MODIS Vegetation Continuous Fields and Land Cover Type
products. GFED4s is also available globally and relies on the MODIS
500 m burned area product (Giglio et al., 2013) supplemented with a
small fire parameterization based on MODIS active fire detections
(Randerson et al., 2012; Van Der Werf et al., 2017) to produce monthly
burned area estimates at ~25 km resolution. Burned area estimates for
the contiguous U.S. NEI are produced with the SmartFire v2 system
(Raffuse et al., 2012), which reconciles information from multiple
sources including ground-based incident reports, fire detections from
HMS, and fire perimeters from either the Monitoring Trends in Burned
Severity database (MTBS; https://www.mtbs.gov) or the Geospatial
Multi-Agency Coordination (GeoMAC; https://www.geomac.gov/index.
shtml). Every three years (2008, 2011, 2014, 2017, etc.), the NEI un-
dergoes an iterative evaluation process to include input from state,
local, tribal, and other government agencies. For the remaining non-
inventory years, estimates of fire activity are still produced with the

https://www.goes-r.gov/education/docs/fs_fire.pdf
https://www.goes-r.gov/education/docs/fs_fire.pdf
https://www.mtbs.gov
https://www.geomac.gov/index.shtml
https://www.geomac.gov/index.shtml
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SmartFire system, but do not undergo the same iterative review. In this
work, we refer to all estimates produced with the SmartFire product as
“NEI” including both inventory and non-inventory years.

2.3. Ambient and deposition measurements

HourlyO3measurementswere obtained from the CleanAir Status and
Trends Network (CASTNET; https://www.epa.gov/castnet). CASTNET
weekly integrated measurements of SO2, nitric acid (HNO3), and PM2.5

potassium, chloride, magnesium, sulfate, nitrate, and ammonium were
also included in this analysis. Daily averaged PM2.5 speciation data was
from the Interagency Monitoring of Protected Visual Environments (IM-
PROVE; http://vista.cira.colostate.edu/Improve/) network and Chemical
Speciation Network (CSN; https://www3.epa.gov/ttnamti1/speciepg.
html). Two-week integrated ammonia measurements were extracted
from the Ammonia Monitoring Network (AMoN; http://nadp.slh.wisc.
edu/amon/) (Puchalski et al., 2015). Ambient carbon dioxide measure-
ments were from the AmeriFlux network (http://ameriflux.lbl.gov/).

Ground-based remotely sensed estimates of AOD were obtained
from the Aerosol Robotic Network (AERONET; aeronet.gsfc.nasa.gov).
Level 1 and 1.5 productswere used tominimize potential data exclusion
due to prescribed fire smoke misclassified as cloud cover. Weekly total
wet deposition and wet concentration of ions was from the National
Atmospheric Deposition Program National Trends Network (NTN)
(Puchalski et al., 2015) andmercury deposition from theMercury Depo-
sition Network (MDN) (http://nadp.slh.wisc.edu/). Measured deposited
ions include NO3, SO4, NH4, Ca, Na, Mg, K, and Cl.

2.4. Anomaly estimation approach

Although there is a relatively rich set of air quality and fire-related
observations in the Flint Hills area that can be used to characterize the
air quality impacts of fire emissions, comparing ambient data and fire
detections is challenging due to the wide area of potential burning
and comparatively sparse surface monitor network (in terms of loca-
tions and sampling frequency) meaning winds may not always trans-
port smoke to regional monitor locations and those monitors may not
always be sampling on those particular days. Because the different pol-
lutant species span very different ranges of values, measurements were
standardized to ease intercomparison and identify common temporal
(seasonal) patterns. For a given pollutant concentration X(s, t) at loca-
tion s and day t, the standardized daily value X∗(s,t) used in this analysis
was computed as:

X� s; tð Þ ¼ X s; tð Þ−X sð Þ� �
=SD sð Þ;

whereXðsÞand SD(s) are themean and standard deviation, respectively,
of X(s,t) across the entire data record at site s. This term is often referred
to as the standardized anomaly in long termweather and climatological
modeling and data assessments (Wilks, 2006). The daily standardized
values were then averaged by week of the year across all available
years since 2002 to create an annual profile. Fig. S1 provides the number
of observations per week over the entire record of data (Fig. S2) used to
support this analysis. The sampling frequency and number of years of
data vary by specie. Averaging across these different data records is
used to leverage all available data to identify times of the year with in-
creased pollutant concentrations that correspond to increases in fire
detection.

2.5. Regression model description

Quantile regression was used to model the relationship between
weekly totalfire detections fromHMS and theweekly average pollutant
levels in the Flint Hills area. The model was fit for the 90th percentile
pollutant concentrations to quantify how fire activity impacted near-
peak pollutant levels. The quantreg library in the R statistical software
package (Koenker, 2005) was used to fit the entire time series of year-
specific weekly data. Standard error estimates for the slope parame-
ters were fit using the bootstrapping option (i.e. se = “boot” and
bsmethod = “xy”). The model was also fit using a subset of the
time series focused on the cold season to minimize the influence of
summer season O3 and PM2.5 from non-fire sources.

3. Results & discussion

The FlintHills ecoregion and the extent of the larger area included for
fire detections and burned area comparisons are shown in Fig. 1. Grass-
land and cropland (Fig. S3) landcover is based on the National Land
Cover Dataset 2011 (Homer et al., 2015) and shown using 4 km square
sized grid cells. There are other large areas of grassland in the central
United States outside the Flint Hills area in central Nebraska, southwest-
ern Kansas, and northern Oklahoma. The Flint Hills ecoregion (shown in
Fig. 1) covers 6.8million acres, which includes 4.8million acres of grass-
land (5.27 million in the broader area represented by the box) and
1 million acres of cropland based on the U.S. Department of Agriculture
2017 Cropland Data Cover and 2011 National Land Cover Dataset (U.S.
Department of Agriculture, 2017). Konza Prairie and Tallgrass Prairie
are the only locations in the Flint Hills ecoregion that contribute mea-
surements to routine network monitors. Very few analytes are mea-
sured at both locations and none are measured on the same temporal
scale.

3.1. Grassland fire activity (fire detections)

Annual total HMS fire detections in the Flint Hills region range from
1.5 thousand in 2013 (drought year) to 12.5 thousand in 2017 with an
average of 6.5 thousand between 2007 and 2018 (Table 1). The HMS
fire detections in this region typically account for about 3% of all fire de-
tections in the contiguous U.S. and 11% during March and April when
activity is highest. In 2014 and 2016 fire detections in the Flint Hills
and nearby surrounding areas accounted for 16% of the contiguous
U.S. total during the spring.

Fig. 2 shows remotely sensed fire detections in the Flint Hills region
by year, month, day of the week, and the percent of detections by hour
of the day. Spatial plots of March and April total fire detections by year
are provided in Fig. S4 and over all years in the abstract graphic. Grass-
land fire activity ismuch higher inMarch and April compared to the rest
of the year and comprises 74 to 93%percent of annualfire detections be-
tween 2007 and 2018 excluding the 2013 (41%) drought year (Fig. 2).
Fire detections in this region tend to be lowest on Sunday and highest
on Saturday. Fire detections from the geostationary GOES satellites
show little activity during the nighttime with a steady increase during
the morning hours and peak in the early afternoon (Fig. 2). While pre-
scribed fire activity extends throughout the day, individual prescribed
grassland fires are typically b6 h (Brey et al., 2017), which means this
temporal profile does not provide an indication of start and end time
for specific prescribed fires.

The number of fires detected by a specific satellite product varies
from year to year and does not always increase or decrease in a similar
magnitude with other satellite products (Fig. 2; Table S1). The multi-
year analysis of HMS fire detections (Figs. 2, S4, S5) shows that pre-
scribed grassland fires are common features of the landscape in the
Flint Hills region each year with some years having less due to drought
conditions or weather conditions non-conducive for prescribed burns
(e.g., rain, high winds).

3.2. Grassland fire burned area estimates

The number of fires is an indication of activity but estimates of area
burned provide an indication about emissions burden for the region.
Emissions are a function of emission factors, fuel consumption, and
area burned (Larkin et al., 2014). Annual total burned area for the Flint

https://www.epa.gov/castnet
http://vista.cira.colostate.edu/Improve
https://www3.epa.gov/ttnamti1/speciepg.html
https://www3.epa.gov/ttnamti1/speciepg.html
http://nadp.slh.wisc.edu/amon
http://nadp.slh.wisc.edu/amon
http://ameriflux.lbl.gov
http://aeronet.gsfc.nasa.gov
http://nadp.slh.wisc.edu


Fig. 1. Grassland shown as a percentage of 4 km square sized cells. The red outline shows the boundary of the Flint Hills ecoregion and the blue box shows the area used for aggregating
burn area and fire detections representing the broader Flint Hills area. The Konza Prairie and Tallgrass Prairiemonitor locations are also shown. Measurements at each site are indicated in
Fig. 5.
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Hills region estimated using multiple data sources is shown in Table 1
and Fig. 3. Annual total acres burned in the Flint Hills region is typically
around 800 hundred thousand acres based on the NEI. Over the same
time period an average of 6.5 million acres of wildland burned per
Table 1
Acres burned and HMS fire detections by year for the Flint Hills area shown in Fig. 1. Acres bur

Burned area
(million acres)

Burned area
(% of total Flint Hills grassland)

Year NEI GFED FINN NEI GFED FINN

2007 0.5 0.1 0.2 9 2 4
2008 1.2 0.8 0.4 23 15 8
2009 0.4 1 0.5 8 19 9
2010 0.2 0.5 0.4 4 9 8
2011 2 1.1 0.4 38 21 8
2012 0.4 0.1 0.1 8 2 2
2013 0.2 0.03 0.1 4 1 2
2014 0.9 1.3 0.4 17 25 8
2015 0.6 0.4 0.3 11 8 6
2016 1.1 1.1 0.5 21 21 9
2017
2018

Average 0.8 0.6 0.3 14 12 6
year in the U.S. (https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.
html).

Annual totals range from 0.03 million acres (2013 drought year
GFED product) to 2million acres (2011 NEI product). The NEI estimated
ned is provided frommultiple sources: NEI, GFED, and FINN.

Fire detections % of all contiguous U.S.
fire detections

% of contiguous U.S. fire detections
in March and April

HMSH HMS HMS

3008 1 6
7130 3 13
6575 4 11
6927 4 11
9229 3 11
2762 1 5
1471 1 2
7102 4 16
4769 3 14
9398 5 16
12,460 3 13
7786 2 8
6551 3 11

https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html
https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html


Fig. 2. HMS fire detections for the Flint Hills area between 2007 and 2018 shown by year, month, week, day, and hour (percentage).
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annual acres burned is typically about 14% of all grasslands in this area,
with a low of 4% and high of 38% in a given year (Table 1). The yearly
variation in burn area from these products are similar to values pub-
lished in literature (Liu et al., 2018), but tend to be lower. Some of the
differences with the (Liu et al., 2018) estimate may be related to differ-
ent methodology for estimating burn area and also extent of area con-
sidered in the analysis.

Annual total burned area estimates for this region are similar for the
NEI and GFED products while FINN estimates the lowest total for most
years. While the NEI and GFED often produce similar total acres burned
estimates, the spatial allocation of these burns can be quite different
(Fig. 3). The NEI product suggests larger total area burned for 2008 and
2011. These years coincidewith the triennial emission inventory process
which included additional information and review by agencies aug-
menting the core set of satellite based information (U.S. Environmental
Protection Agency, 2018). Fig. 4 shows NEI estimated total annual area
burned as a fraction of the total area of the grid cell (4 square km).
Here, total acres burned sometimes exceeds the area of the grid cell
which may reflect the simple approach used here for spatial allocation
of prescribed fires or an overestimate of some field size assignments.
Similar spatial patterns of gridded area burned are evident using FINN
(Fig. S6) and GFED (Fig. S7).

Acres burned assigned to specific detected prescribed fires are typi-
cally based on default field size assumptions. The median burn area for
bothNEI and FINN is 150 acres (Fig. 3). Even though theNEI typically as-
signs similar field sizes as FINN, thatmethod also includes fires assigned
specific field sizes that can bemuch larger. The average burn area in the
NEI is 203 acreswithmanyfires exceeding500 acres (Fig. 3). TheNEI es-
timates of annual total area burned are higher than FINN because of the
sometimes much larger burn area assignments and also because FINN
only uses fire detections from MODIS whereas NEI uses fire detections
from both geostationary and polar orbiting satellites (Koplitz et al.,
2018; U.S. Environmental Protection Agency, 2018; Wiedinmyer et al.,
2011).



Fig. 3.Annual total burned area estimated for the Flint Hills area using NEI, FINN, and GFED. Annual total estimates are also adapted from Liu et al., 2018, which likely represents a different
geographic extent. Gridded total acres burned are shown for 2016 in the right column and the distribution of burn area for specific fires between 2007 and 2016 is shown at bottom left.
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Due to its reliance on dailyfire detections, FINN is sensitive tomissed
detections due to cloud cover or other data quality issues which some-
times leads to underestimated burned area during large fires (Paton-
Walsh et al., 2012). Conversely, GFED has difficulty capturing small
fires, even with the small fire correction in version 4.1s (Koplitz et al.,
2018; Reddington et al., 2016). The NEI likely better represents fire ac-
tivity in the U.S. overall compared to either FINN or GFED since it in-
cludes information not used by the global products. Issues related to
land cover assumptions and other factors influencing burned area dis-
tributions may introduce errors in each of these products (Koplitz
et al., 2018; Larkin et al., 2014).

Categorical assignment of fires in this region is important as assign-
ment to wild, prescribed, or cropland will result in differences in emis-
sions model assignment of emission factors, field size assumptions
(area burned), allocation of daily emissions to hour of the day, plume
rise approach, and speciation of VOC and PM2.5 emissions (Baker et al.,
2016; Baker et al., 2018; Zhou et al., 2018). Differences in these assign-
ments are important as incorrect assignments can lead to poor model
replication of smoke and air quality impacts. Even though prescribed
fire in the Flint Hills ecoregion is common, grassland wildfires do
occur in the broader area and are evident in the acres burned plots
(Fig. 3).

The Anderson Creek wildfire in southwest Kansas and north-central
Oklahoma is one of the largest in Kansas history and burned
N400,000 acres between March 22 and 31, 2016 (http://wildfiretoday.
com/tag/anderson-creek-fire/). This wildfire is clearly evident in both
the NEI and GFED burned area products but less pronounced in the
FINN burned area product (Fig. 3). This region does not activelymanage
the grasslandwith prescribedfire at a scale comparable to the FlintHills,
but local news reports suggest this wildfire was large enough to elimi-
nate some of the woody invasive growth in the region (https://www.
kansas.com/news/local/article105463466.html).

3.3. Surface-level ambient speciated particulate matter impacts

Biomass burning directly emits PM2.5 and chemical species such as
NOX, SO2, and NH3 that are known precursors of secondary PM2.5 forma-
tion in the atmosphere (Baker et al., 2016; Baker et al., 2018;Wiedinmyer
et al., 2011). Previous research has shown local (Liu et al., 2016) to re-
gional scale (Baker et al., 2016) PM2.5 impacts from prescribed grassland
fire in this region. Springtime increases in PM2.5 organic and elemental
carbon are evident while sulfate tends to peak in the summer and nitrate
during the winter and early spring (Fig. S8).

Fig. 5 shows the average weekly standardized anomaly estimated
over all available years of data for pollutants measured at Konza Prairie
and Tallgrass Prairie. Table 2 provides quantile regression parameters
and significance values for year-specific weekly averaged pollutant
levels compared with HMS fire detection totals. The slope parameters
in Table 2 are an estimate of the increase in the 90th percentile weekly
average pollutant value for every 1000 HMS detects. The corresponding
p-value indicate whether the estimated slope is statistically significant
from zero.

At the Tallgrass Prairie monitor, PM2.5 organic carbon (N = 500,
β = 5.67, p-value b 0.001), elemental carbon (N = 500, β = 1.23,
p-value b 0.001), potassium (N = 500, β = 0.19, p-value b 0.001),
chloride (N = 303, β = 0.03, p-value b 0.001), and lead (N = 500,

http://wildfiretoday.com/tag/anderson-creek-fire
http://wildfiretoday.com/tag/anderson-creek-fire
https://www.kansas.com/news/local/article105463466.html
https://www.kansas.com/news/local/article105463466.html


Fig. 4. Total burned area based on the National Emission Inventory approach for March and April for 2007 to 2015 (2016 is shown in Fig. 3).
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β = 0.001, p-value = 0.1368) show a strong increase coincident
with increased prescribed fire activity in the region while magne-
sium, silicon, aluminum, iron, copper, and coarse fraction particulate
show little or no increase during this time. Similarly, at Konza Prai-
rie, a relationship was evident between prescribed burning activity
and PM2.5 potassium (N = 475, β = 0.10, p-value b 0.001). Unlike
Tallgrass Prairie, a relationship was seen for PM2.5 magnesium (N =
475, β = 0.01, p-value = 0.00124) while none for chloride. Neither
site had a relationship between prescribed fire activity and sulfate, ni-
trate, calcium, or sodium.

PM2.5 sulfate and nitrate do not have a seasonal peak correspond-
ing with fire activity in the Flint Hills region, which suggests other
sources dominate contribution to these components of PM2.5. How-
ever, there are modest increases in precursors SO2 (N = 475, β =
0.19, p-value = 0.0028), ammonia (N = 95, β = 1.71, p-value =
0.0071), and nitric acid (N = 475, β = 0.80, p-value = 0.0015) at
Konza Prairie during the spring season. Ammonia is likely available
in the region to convert SO2 and nitric acid to PM2.5 ammonium, so
the lack of increased sulfate and nitrate may be due to persistent
regional sources of PM2.5 sulfate and nitrate overwhelming the con-
tribution from prescribed fires.

The weekly average standardized anomaly at IMPROVE and CSN
sites near the Flint Hills region are provided for PM2.5 organic carbon
(Fig. S9), elemental carbon (Fig. S10), and potassium (Fig. S11) and spa-
tially for the spring season in Fig. 6. Increased PM2.5 organic carbon is
seen at monitor locations in and near the Flint Hills region during
March and April which iswhen prescribed fire activity is highest. Values
are highest at Tallgrass Prairie and Cherokee Nation with an increase
also seen downwind in northeast Kansas, westernMissouri, and several
urban areas including Topeka, KS and Tulsa, OK. It is likely prescribed
fires impact other urban monitors in the region but local sources of
PM2.5 and high levels of PM2.5 outside the spring season may obscure
impacts of these fires. Other more complex methods such as photo-
chemical modeling would be better suited to differentiate sources of
PM2.5 in urban areas further downwind of the Flint Hills (Baker et al.,
2016).

Many sites with increased spring PM2.5 organic carbon anomaly also
show a similar increase in PM2.5 elemental carbon (Fig. 6). The spatial



Fig. 5.Average standardized anomaly estimated byweek for eachmeasuredpollutant.Warm colors indicate levels greater than typical and cool colors represent periodswhere levelswere
lower than the long-term average. The number and specific years included for each specie varies (see Fig. S1). Mercury concentration in water (HG DEP) represents 2 monitor locations
near the Flint Hills (KS05 and KS31).
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pattern of PM2.5 potassium in spring is like PM2.5 organic and elemental
carbon but tends to be less regionally extensive. Potassium is known to
be emitted fromwildland fire and has been used as a tracer for identify-
ing biomass burning impacts (Li et al., 2003; Liu et al., 2016), but some
of the elevated anomaly for potassium is related to other sources. The
increased standardized anomaly for PM2.5 potassium clearly evident
Table 2
Quantile regression coefficients for the 90th percentile (tau = 0.9) between year specific
weekly average pollutant levels and weekly total HMS fire detections. The regression was
applied for the entire data record except for daily 1-hr maximum ozone which excluded
the summer season.

Pollutant Site N Units β1 Pr(N|t|)

PM2.5 potassium Konza 475 μg/m3 0.10 0.00000
PM2.5 magnesium Konza 475 μg/m3 0.01 0.00124
Nitric acid Konza 475 ppb 0.80 0.00152
Sulfur dioxide Konza 475 ppb 0.19 0.00281
Ammonia Konza 95 ppb 1.71 0.00717
1-h peak ozone
(week b20 or week N40)

Konza 199 ppb 11.37 0.00896

PM2.5 ammonium Konza 475 μg/m3 −0.13 0.29233
PM2.5 nitrate Konza 475 μg/m3 0.24 0.44969
PM2.5 sodium Konza 475 μg/m3 0.02 0.46473
Aerosol optical depth Konza 64 none −0.02 0.69579
PM2.5 calcium Konza 475 μg/m3 0.04 0.78763
PM2.5 sulfate Konza 475 μg/m3 0.02 0.90588
Carbon dioxide Konza 270 ppb −1.27 0.95102
Potassium wet deposition Konza 343 mg/L 0.008 0.96006
PM2.5 chloride Konza 475 μg/m3 −0.001 0.96801
Mercury wet deposition KS05 + KS31 370 ng/L 17.06 0.06772
PM2.5 potassium Tallgrass 500 μg/m3 0.19 0.00004
PM2.5 organic carbon Tallgrass 500 μg/m3 5.67 0.00016
PM2.5 elemental carbon Tallgrass 500 μg/m3 1.23 0.00016
PM2.5 chloride Tallgrass 303 μg/m3 0.03 0.00073
PM2.5 lead Tallgrass 496 μg/m3 0.001 0.01368
PM2.5 iron Tallgrass 500 μg/m3 −0.007 0.06723
Coarse particulate matter Tallgrass 500 μg/m3 4.25 0.07682
PM2.5 calcium Tallgrass 500 μg/m3 0.05 0.15750
PM2.5 copper Tallgrass 496 μg/m3 0.0001 0.23428
PM2.5 aluminum Tallgrass 493 μg/m3 −0.011 0.40452
PM2.5 sodium Tallgrass 449 μg/m3 0.07 0.45584
PM2.5 magnesium Tallgrass 417 μg/m3 0.005 0.53862
PM2.5 silicon Tallgrass 500 μg/m3 0.02 0.56814
PM2.5 sulfate Tallgrass 500 μg/m3 0.25 0.58574
PM2.5 nitrate Tallgrass 500 μg/m3 0.21 0.75314
around the Independence Day holiday at all monitor locations
(Fig. S11) is reasonable since potassium is a large component of fire-
works and elevated potassium has been measured at other locations
during holidays (Dickerson et al., 2017). Some of the differences in
downwind values for each of these components of PM2.5 may also
be related to sample frequency differences andwhich years themon-
itor operated (Figs. S1 and S2).

3.4. Particulate matter speciation

The relative contribution of different chemical components to total
PM2.5 from grassland fires is used to support predictive statistical
modeling (Liu et al., 2016) and to allocate total PM2.5 emissions to spe-
cific chemical components for predictive photochemical transport
models that simulate wildland fire impacts (Baker et al., 2016). Chemi-
cally speciatedmeasurements of PM2.5 made atmonitor locations in the
Flint Hills region where PM2.5 organic carbon standardized anomaly ex-
ceeds 0.5 during the months of March and April were averaged to gen-
erate a composite speciation profile. This threshold resulted in inclusion
of 24%of observations at the Tallgrass Prairie and CherokeeNationmon-
itors combined (Fig. S12). Since sulfate and nitrate ion components
were largely regional in nature, these species were assumed to be
fully neutralized by ammonium and subtracted from daily total PM2.5.

The largest local components of PM2.5 mass during periods of in-
creased grassland burning are organic carbon (40%) and elemental car-
bon (9%) (Fig. 7). Assuming an organic mass to organic carbon ratio of
1.7 (Simon and Bhave, 2011), total organic and elemental carbon re-
lated mass account for N85% of local PM2.5 during periods of prescribed
burning in this area. Fig. 7 also shows the default PM2.5 speciation profile
used to allocate emissions of total PM2.5 to specific chemical constitu-
ents used by some modeling systems to estimate smoke impacts
(Baker et al., 2016). The distribution ofmeasured fractional composition
compareswell with the default chemical speciation profile (Simon et al.,
2010). Further, the estimate of non‑carbonmass associatedwith organic
carbon (NCOM = 0.7 ∗ OC) matched well to the residual estimate
shown in Fig. 7 which suggests the bulk of the remaining mass could
be explained by organic aerosols. The NCOMconsistencywith the resid-
ual unspeciated mass suggests the mass balance could be closed with
NCOM, but this analysis does not definitively show that this mass asso-
ciated with organic carbon is the unspeciated mass.



Fig. 6.Week 11 to 16 average standardized anomaly estimated by monitor location for PM2.5 organic carbon, PM2.5 elemental carbon, PM2.5 potassium, aerosol optical depth, ammonia,
potassium wet deposition, carbon dioxide, daily 1-h maximum ozone, and mercury wet deposition. Warm colors indicate levels greater than typical and cool colors represent periods
where levels were lower than the long-term average. Gray shading indicates grassland landcover.
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3.5. Total column particulate matter (aerosol optical depth) impacts

The AOD standardized anomaly at Konza Prairie shows a slight in-
crease during periods of increased spring prescribed burning in the re-
gion based on daily maximum AOD (Fig. 5) and no increase in daily
average AOD (Fig. S13). Other sites in the region also show no increase
in daily average AOD during the spring season. The strong relationship
between prescribed fire activity and PM2.5 potassium at Konza Prairie
suggests the site experiences elevated particulates from regional burn-
ing, but these impacts are not evident in the AODmeasurement record.
This may be due to the presence of clouds impacting AOD retrievals, the
lack of data during the spring months at this location (Fig. S14), influ-
ence of non‑carbon (e.g., sulfate and nitrate) constituents of total
PM2.5 masking increased AOD levels during the spring season, or some
combination of these factors.
3.6. Local (rural) ozone impacts

Biomass burning results in emissions of both NOX and VOC,
which can react in the atmosphere to form O3 when meteorological
conditions (e.g., high temperatures, low wind speeds, and high solar
radiation) are favorable (Baker et al., 2016; Baker et al., 2018;
Wiedinmyer et al., 2011). A previous study using a statistical
model to estimate grassland prescribed fire impacts in the Flint
Hills suggests these fires could contribute 12–30 ppb to surface
level 8-hr average O3 levels (Liu et al., 2018). Photochemical model-
ing studies have indicated a similar range for grassland fires in this
region (Baker et al., 2016; Kansas Department of Health and
Environment, 2012), but these models have a systematic tendency
of over-estimation at monitors predicted to have fire impacts
(Baker et al., 2016; Baker et al., 2018).



Fig. 7. The distribution of PM2.5 chemical components of all samples in the months of
March and April where organic carbon standardized anomaly was higher than 0.5 at
multiple IMPROVE monitors: Tallgrass Prairie and Cherokee Nation. PM2.5 sulfate and
nitrate were subtracted from the total mass before normalizing individual components.
NCOM was estimated as 0.7*OC. RES is the difference between total PM2.5 and the sum
of organic carbon (OC), elemental carbon (EC), potassium (K), silicon (SI), calcium (CA),
and chloride (CL).
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The distribution of O3 levels at the Konza Prairie and Cherokee Na-
tion monitors are shown by month and week of the year in Fig. 8. The
CherokeeNation site shows a slight increase inmedian and interquartile
O3 levels during April compared to March and May. Levels at the Konza
Fig. 8. Distribution of hourly O3 shown by month (left column) and week of the year (right co
Fig. 6.
Prairie site do not suggest a larger interquartile range compared to
March and May but do show an increased occurrence of high O3 levels
that are above the interquartile range (Fig. 8). The weekly standardized
anomaly of daily maximum 1-hr O3 at Konza Prairie increases in the
spring and is generally coincident with increased prescribed burning
in the region (Fig. 5). This increased spring anomaly is physically discon-
tinuous from the elevated summer season O3 at this monitor location.
The relationship between maximum 1-hr O3 levels and prescribed fire
activity (HMS fire detections) is weak when considering the entire
year at Konza Prairie but becomes much stronger when excluding the
summer season (N = 199, β = 11.37, p-value = 0.0089).

Directly relating elevated O3 levels with increased prescribed fire is
challenging sinceO3 formation is complicated and requires specificmete-
orological conditions that are not always present in this region when
burning activity is highest. Cool temperatures and high winds are com-
mon in the spring,which are not conducive to O3 formation. Additionally,
cloudy conditions commonduring the spring also inhibit photolytic reac-
tions that can lead to O3 formation when NOX and VOC emissions are
present (Baker et al., 2016).

3.7. Ammonia impacts

Ammonia is known to be emitted during biomass burning
(Wiedinmyer et al., 2011). Several studies suggest increased surface
level ammonia is sometimes associated with wildfire (Benedict et al.,
2017; Chen et al., 2014; Saylor et al., 2015), but local to regional scale
impacts on air quality are not well characterized and no information
is available specific to grassland burning impacts near the Flint Hills.
lumn) at Konza Prairie (top row) and Cherokee Nation (bottom row). Locations shown in
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The Konza Prairie monitor measuring 2-week integrated ammonia
shows a relationship with prescribed grassland burning activity (N =
95, β=1.71, p-value = 0.0072) (Table 2). Increased springtime anom-
alies are seen at Konza Prairie (Fig. 4) and other sites in Kansas, Okla-
homa, and Nebraska (Fig. 5). However, these increased anomalies
extend into the early summer suggesting other sources may also be
contributing to ammonia at these locations (Fig. S15), such as agricul-
tural fertilizer application or the seasonal introduction of additional
livestock for grazing in the nearby pasture lands.

3.8. Wet deposition impacts

Mercury has been measured in wildfire plumes. Emissions vary by
fuel type and grassland emissions of mercury are substantially lower
than trees (Wiedinmyer and Friedli, 2007). Total mercury deposition
peaks outside the period of intensive prescribed fire in the region, but
mercury concentration in deposited water shows occasional peaks dur-
ing this period (Fig. S16). Theweekly standardized anomaly formultiple
sites in the region suggest amodest increase inmercury deposition dur-
ing the time of increased prescribed grassland fires in the region (N =
370, β = 17, p-value = 0.067) (Fig. 5; Table 2).

Mercury concentration in wet deposition at monitors near and
downwind the Flint Hills region show an increase during the spring sea-
son at sites in eastern Kansas (Fig. 6). While many sites have small or
negative average mercury deposition standardized anomalies during
the spring, most sites downwind of the Flint Hills have one or two
weeks (Fig. S17) with a positive anomaly which suggests sites may
sometimes be impacted by prescribed grassland fire whenweather sys-
tems favor transport from the Flint Hills to the monitor and precipita-
tion occurs.

Most mercury emissions from biomass burning are in the form of
gaseous elemental mercury which has a long atmospheric lifetime
meaning impacts from this form would be regional to continental in
scale (Baker and Bash, 2012). A smaller fraction of the emissions are
particulate mercury (Wiedinmyer and Friedli, 2007) and this form of
mercury may be contributing to local and regional scale deposition as
it will be removed from the atmosphere at time scales similar to other
chemical forms of particulate matter like organic and elemental carbon
(Baker and Bash, 2012).

The distribution of the concentration of wet deposited ions does not
show obvious increases during the spring (Fig. S18). Measurements of
potassium in wet deposition sometimes show an increased anomaly
during March and April (Fig. S19) but not the consistent increase seen
for ambient PM2.5 potassium (or organic and elemental carbon). In
fact, wet deposition anomalies for potassium during the spring are
highest in the Ozarks region rather than Flint Hills (Fig. 6). A strong re-
lationship is less likely for wet deposited ions since both prescribed fire
and rainfall is needed for an increase to be realized in the monitor data.
Rainfall is unlikely given the type of weather conditions (e.g., lowwinds
andnoprecipitation) associatedwith prescribedfire. A linkbetween de-
posited nutrients and wildfire has been seen in other regions of the
world (Ponette-González et al., 2016) but no specific studies have
shown a relationship between deposited ions and wildland fire in the
U.S.

3.9. Impacts on other pollutants

Biomass burning of grasses are known to emit CO2 (Clements et al.,
2006; Strand et al., 2016), but local to regional scale impacts from grass-
land burning are lesswell known. Ambient CO2 levels atmonitors in the
region do not show large increases during the spring season, even at the
Konza Prairie site that is very close to prescribed fire activity (Table 2;
Fig. S20). Daily maximum CO2 standardized anomaly at both Kansas
monitor locations show a modest increase during the spring (Fig. 5)
while monitors further from the Flint Hills show a negative anomaly
over the same timeframe (Fig. S21). Interestingly, the monitor in
eastern Kansas (UKFS) shows an increased springtime anomaly for
CO2 but does not show a similar increased anomaly for AOD (Fig. 6).

Biomass burning is known to emit other pollutants into the atmo-
sphere that have negative impacts on human health either directly, in-
directly through chemical transformation, or both. Pollutants including
CO, VOC, and NOX are emitted fromwildland fire (Benedict et al., 2017;
Wiedinmyer et al., 2011) but nomeasurementswere available in the re-
gion to provide information about whether prescribed grassland fires
may be contributing to the ambient burden. Weekly integrated nitric
acid measurements at Konza Prairie show an increase in concentration
during the period of prescribed fires in the region, which may be an in-
direct measure of NOX but a direct relationship is not clear since in-
plume measurements from multiple wildfires (Baker et al., 2018; Cai
et al., 2016) suggest peroxyacetyl nitrate (PAN) and not nitric acid is
formed in smoke plumes.

4. Implications

Grassland burning in the Flint Hills region is typically comprised of
many prescribed fires of short duration during March and April. Ambi-
ent measurements of PM2.5 constituents including organic carbon, ele-
mental carbon, potassium, chloride, sulfur dioxide, oxidized nitrogen
gases, lead, ammonia, and peak 1-hr non-summer season O3 were ele-
vated during periods of prescribed fire activity in the Flint Hills. The
air quality impacts from Flint Hills prescribed fire activity shown here
and in previous work represent only one of the many environmental
considerations important for land managers in this region. Recent re-
search suggests that extending the burn season outside of the short
time period in early April would result in the same ecological benefits
for the native grassland ecosystem and promote grass growth for cattle
grazing (Weir and Scasta, 2017).

A longer prescribed burning periodwould allow landmanagers to
meet acres burned goals and potentially allow for larger amounts of
annual acres burned in the Flint Hills while decreasing the short-
term elevated pollution impacts due to smoke (Towne and Craine,
2016; Weir and Scasta, 2017). Increased burning outside of spring
could also allow the region to maintain the cycle of burning
(b3 years) needed to minimize invasive woody growth in the region
during years when spring time weather may not be conducive for
prescribed fire (Ratajczak et al., 2016). More research is needed to
better understand the trade-offs of increased prescribed fire activity
outside the spring season in the Flint Hills region to help managers
optimize land management strategies that also minimize air quality
and public health impacts.

Supplementary data

Additional information about fire detections and air quality impacts
are provided in the supporting information. Supplementary data to this
article can be found online at https://doi.org/10.1016/j.scitotenv.2018.
12.427.
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