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Abstract  24	  

Worldwide reforestation has been recommended as a landscape restoration strategy to 25	  
mitigate climate change in areas where the climate can sustain forest. This approach may 26	  
threaten grassland ecosystems of unique biodiversity as such policies are based on the false 27	  
assumption that most grasslands are man-made. Here, we use multiple lines of evidence 28	  
(palaeoecological, pedological, phylogenetic, palaeontological) from Central Eastern Europe 29	  
and show that various types of grasslands have persisted in this area throughout postglacial 30	  
i.e. the past 11,700 years. A warm and dry climate, frequent fires, herbivore pressure, and 31	  
early Neolithic settlements kept forests open until widespread forest clearance beginning 32	  
4000-3000 years ago. Closed forest cover has been the exception for the past two million 33	  
years. This long-term persistence has likely contributed to the high biodiversity of these 34	  
grasslands. Consequently, we call for a more cautious prioritisation of the protection of what 35	  
may be erroneously considered natural, i.e. forests, by many environmental specialists and 36	  
managers. Instead we provide a new framework for a better understanding of the evolution 37	  
and persistence of different grassland types and their biodiversity, so that grasslands can be 38	  
better understood, valued and conserved. 39	  

 40	  
Keywords: ancient grasslands, anthropogenic disturbance, climate change mitigation, fire, 41	  
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The World Resources Institute (WRI) Atlas of Forest and Landscape Restoration was 46	  
designed to identify opportunities for landscape restoration worldwide, an initiative supported 47	  
by several international organisations concerned with land degradation, climate change 48	  
mitigation and biodiversity loss (WRI, 2015). It contrasts the potential extent of tree cover 49	  
based on climate conditions with the current distribution of forest globally. This map identifies 50	  
23 million km2 of land worldwide suitable for tree planting, mostly being currently open 51	  
landscapes with grassland (http://www.wri.org/applications/maps/flr-atlas). However, 52	  
grassland experts oppose the offsetting of agricultural deforestation through the afforestation 53	  
of grassy ecosystems arguing that this approach ignores the unique biodiversity, cultural 54	  
significance and important ecosystem services provided by this ecosystem (Willis et al., 55	  
2008; Parr et al., 2014; Veldman et al., 2015a,b; Bond et al., 2016; Joshi et al., 2018). Their 56	  
imperative is to map “old-growth” grasslands, where tree cover is naturally sparse and where 57	  
such afforestation would be detrimental. Another important debate is how to provide 58	  
strategies to reduce the impact of the ongoing abandonment of high biodiversity grasslands, 59	  
therefore preventing succession towards low biodiversity secondary shrub and forest 60	  
communities (Biró et al., 2010; Valkó et al., 2018a).  61	  
Here we go further and challenge the perception that treeless areas in temperate regions, 62	  
where the current climate would permit forest development, have all previously been forested 63	  
and therefore grasslands and open canopy woodlands are secondary habitat types in these 64	  
regions. This perception fails to consider the vital role of natural disturbances such as fire or 65	  
herbivores (Bond and Keeley, 2005). We illustrate this by analysing evidence from Central 66	  
Eastern Europe. The choice of this region is based on the following arguments: i) it hosts one 67	  
of the largest tracts of grasslands in Europe crucial for maintaining biodiversity in European 68	  
agricultural landscapes (Wilson et al., 2012); ii) has one of the highest small-scale species 69	  
diversities in the world (Dengler et al., 2014; Turtureanu et al., 2014; Chytrý et al., 2015); and 70	  
iii) is a transitional, complex region between closed forest and steppe biomes (Bohn et al., 71	  
2003) and hence contains grasslands of diverse origin and history. Yet, despite these 72	  
features, grasslands are rarely highlighted as biodiversity hotspots. This is because the key 73	  
characteristics and ecological processes important for this classification, such as biodiversity 74	  
intactness and a lack of human disturbance, cannot be readily applied to them (Mittermeier 75	  
et al., 2011). Our goal is to better define grassland types based on their origin, age and the 76	  
drivers of their formation and maintenance so that grasslands can be better understood, 77	  
valued and conserved. 78	  
 79	  
2. A new framework for defining European grassland types  80	  
Bohn et al. (2003) provided a geobotanical expert assessment, which maps Europe’s 81	  
potential natural vegetation (PNV) i.e. the vegetation cover that would exist today in the 82	  
absence of human activity. It defines most areas that are currently covered by grasslands or 83	  
open woodlands in Central Eastern Europe as dominated by deciduous broadleaved forest 84	  
or mixed coniferous and broadleaved forest (Fig. 1). Open, or at least partly open vegetation 85	  
types, are only recognised in the lowlands of the Carpathian Basin. Fossil records show that 86	  
grasslands and open canopy woodlands covered extensive areas in Central Eastern Europe 87	  
during the Pleistocene (i.e., the past 2 million years) when cold and dry climate conditions 88	  
prevailed (Kuneš et al., 2008; Ellenberg and Leuschner, 2010; Feurdean et al., 2014; 89	  
Magyari et al., 2014). Warmer climate conditions during the Holocene (i.e. the last 11,700 90	  
years) then greatly reduced the potential distribution and/or extension of grasslands (Birks 91	  
and Willis, 2008). An especially critical period for grassland persistence was the mid 92	  
Holocene period (9000-4500 cal yr BP), when moister climatic conditions triggered forest 93	  
expansion (Roberts et al., 2018). Identification of warm/moist stage refugia for grasslands 94	  
(i.e. locations where they persisted) during the mid Holocene is therefore of crucial 95	  
importance for understanding ancient grasslands.  96	  
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It is widely accepted that natural grasslands growing on rocky skeletal and other poor soils 97	  
with a permanent or seasonal moisture deficit, i.e. outcrops, steeper slopes, gravel 98	  
riverbanks, salt and sandy soils the so-called primary grasslands have survived continuously 99	  
in small pockets throughout the Holocene in their current locations (Lang, 1994; Poschlod 100	  
and WallisDeVries, 2002). Currently, the extent of these grassland types is limited, apart 101	  
from grasslands growing on salt and dry sandy soils, which are more common in the 102	  
Carpathian Basin (Molnár and Borhidi 2003; Deák et al., 2014). It is therefore highly 103	  
improbable that these small, isolated grassland areas were the only refugia of the 104	  
extraordinarily rich grassland flora of so-called “semi-natural” grasslands. The high genetic 105	  
diversity of some grassland plant species in this region (Turtureanu et al., 2014) and the 106	  
remarkable species richness and endemic plant and animal species typical for grasslands 107	  
(Chytrý et al., 2015) suggest a wider extent of primary grasslands during the Holocene.  108	  
In contrast to the primary grasslands, open canopy woodlands and grasslands currently 109	  
found in areas where climate and soils would allow forest growth, and which are only 110	  
extensively managed (i.e., no artificial fertiliser and pesticide application) are considered to 111	  
be semi-natural (Pärtel et al., 2005; Leuschner and Ellenberg, 2017). Here, we challenge the 112	  
view that most of these grasslands have replaced formerly naturally occurring forests within 113	  
recent centuries or millennia. We present multiple lines of evidence (palaeobotanical, 114	  
pedological, phylogenetic, palaeontological) from five countries in Central Eastern Europe, a 115	  
region with some of the highest-biodiversity grasslands of the world. Firstly, we review 116	  
published direct records of past grassland occurrence (pollen, plant macrofossils, charcoal) 117	  
from both natural (lakes, bogs) and archaeological archives, alongside other indirect fossil 118	  
(pedological, zoological) and recent genetic evidence from Central Eastern Europe. 119	  
Secondly, we review the characteristics of the environmental and disturbance factors 120	  
(climate, fire, herbivores and human impact) during the Holocene in this region. Finally, we 121	  
evaluate whether continuous grassland presence was possible under the Holocene climatic 122	  
conditions, fire and grazing regimes, and increasing anthropogenic impacts. 123	  
Based on their age and the drivers of their formation, we set out a new framework for three 124	  
types of grasslands in Central Eastern Europe: 1) Primary, natural grasslands on skeletal 125	  
and other poor soils, which have existed throughout the Holocene until the present; 2) 126	  
Primary, ancient grasslands on deeper soils, maintained by climate and disturbances during 127	  
the early Holocene and then predominantly by disturbances until the present; and 3) Semi-128	  
natural grasslands, extensively managed grasslands, formed and maintained by 129	  
anthropogenic disturbances during the late Holocene (Table 1). We argue for the recognition 130	  
of the importance of previously overlooked ancient grasslands that have persisted throughout 131	  
the Holocene, maintained by natural and later also by anthropogenic disturbances. 132	  
 133	  
3. Multi-proxy evidence for grassland persistence during the Holocene 134	  
3.1 Fossil plant evidence  135	  
Pollen and palaeobotanical records from natural archives (lakes and peatbogs) in currently 136	  
grassland-rich areas in Central Eastern Europe indicate the prevalence of a more open 137	  
landscape between 11,700 and 9000 cal yr BP and the maximum extent of forest cover 138	  
between 9000 and 4500 cal yr BP (Figs.1, 2; Table 2; Fig.S1). While these studies show a 139	  
reduction in grassland cover, especially of xerothermic and floodplain grasslands during the 140	  
mid Holocene, there is no evidence of their widespread disappearance. Rather, there is 141	  
strong support for their persistence, given the concurrent presence of many grasslands, i.e. 142	  
Adonis spp., Artemisia spp., Centaurea spp., Festuca rubra, Festuca spp., Filipendula spp., 143	  
Helianthemum spp., Potentilla erecta, Potentilla spp., Sanguisorba spp., Trifolium spp., 144	  
Thymus spp., and light-demanding tree and shrub taxa during this period (Fig. 1; Table 2). 145	  
Archaeobotanical reports from Hungary and Poland suggest an even greater proportion of 146	  
heliophilous taxa growing locally than pollen records indicate (Fig. 1; Table 2). Remains of 147	  
grassland species including steppe elements, i.e. Asperula cynanchica, Phleum pratense, 148	  
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Plantago media, Stipa pennata, Stipa sp., Silene vulgaris, Teucrium chamaedrys, have been 149	  
reported from archaeobotanical records of early Neolithic sites from Germany (Fig. 1; Table 150	  
2) and Czech Republic (Archaeobotanical Database of the Czech Republic; 151	  
http://www.arup.cas.cz). Calcareous grasslands have also been identified in the Neolithic 152	  
lakeshore sites in the northern foothill of the Alps (Fig. 1; Table 2). The species found are 153	  
typical of closed xerophilous and mesophilous grasslands at sites where trees would have 154	  
been able to grow under the climatic conditions of the mid Holocene. Taken together, fossil 155	  
plant evidence from natural archives and archaeological sources suggest that grasslands 156	  
existed locally before the start of the Neolithic and therefore before marked human impacts. 157	  
These findings also demonstrate grassland persistence throughout the mid Holocene, 158	  
although archaeological records show the occurrence of higher grassland diversity than that 159	  
found in pollen records.  160	  
 161	  
3.2. Zoological evidence 162	  
Indirect evidence for the persistence of open, or partly open landscapes throughout the mid 163	  
Holocene comes from the palaeontological remains of animal species restricted to extensive, 164	  
open habitats (Fig. 1). Results from the Carpathian Basin (Hungary and Romania) show that 165	  
several species typical of steppic environments e.g. Asinus hydruntinus (European Wild 166	  
Ass), Equus ferus subsp. gmelini (Eastern European Wild Horse), Microtus gregalis (Narrow 167	  
Headed Vole), Ochotona pusilla (Steppe Pika), Otis tarda (Great Bustard) and Vipera ursinii 168	  
subsp. rakosiensis (Meadow Adder) were abundant during the early Holocene (Németh et 169	  
al., 2017). They became discontinuously present from 8000 cal yr BP and several of these 170	  
species disappeared between 5000 and 4000 cal yr BP at a time of increased anthropogenic 171	  
pressure, but in a grassland landscape. Fossil malacological records in currently grassland-172	  
rich landscapes reveal a similar picture (Fig. 1); a continuous Holocene presence of strictly 173	  
open habitat molluscs (Chondrula tridens, Helicopsis striata, and Vallonia pulchella) unable 174	  
to survive in closed forests (Ložek, 2005; Horsák et al., 2009; Moskal-del Hoyo et al., 2018). 175	  
Overall, while there is evidence that many open habitat mollusc species contracted their 176	  
range during mid Holocene forest expansion, there is also robust support for their local long-177	  
term persistence, and consequently also for the continuity of grassy ecosystems. 178	  
 179	  
3.3 Phylogeographic evidence 180	  
Phylogeographic analysis represents a further source of data facilitating the interpretation of 181	  
the distribution of past grasslands. A pattern of genetic diversity decline from core 182	  
populations in southern Siberia towards the range periphery of smaller populations in 183	  
western Europe has been confirmed for several grassland plant species including Adonis 184	  
vernalis (Hirsch et al., 2015), Iris aphylla (Wroblewska 2008), Stipa capillata (Wagner et al., 185	  
2011) and Stipa pennata (Wagner et al., 2012), These studies have also revealed a 186	  
surprisingly low genetic differentiation between central and peripheral intermediate 187	  
populations, or a complete lack of private alleles among peripheral populations (e.g. Wagner 188	  
et al. 2011; Hirsch et al., 2015), which may reflect the absence of any long-standing isolation 189	  
of these populations. This implies that these species must have had a more continuous past 190	  
distribution in Central and Eastern Europe allowing gene flow and interbreeding. Rapid 191	  
progress in the field of DNA analysis, especially environmental DNA, may shed further light 192	  
on the origin and past range distribution of grasslands (Thomsen and Willerslev, 2015) 193	  

 194	  
3.4 Pedological evidence 195	  
A further line of evidence used in the interpretation of former vegetation distributions comes 196	  
from soil types (IUSS WRB 2006). In Central Eastern Europe, dark soils (chernozems) from 197	  
steppe and forest steppe zones are considered to have developed before the spread of 198	  
forests and to have persisted under open or semi-open vegetation (Pokorný et al., 2015). 199	  
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Others, however, view these soils as having survived under forest development (Eckmeier et 200	  
al., 2007). A palaeo-pedological analysis from the Transylvanian Basin (Romania) shows the 201	  
occurrence of islands of dark soils of Pleistocene age (20,000-14,000 cal yr BP), which, in 202	  
drier areas, persisted until the present (Pendea et al., 2002) suggesting grassland 203	  
persistence throughout the Holocene. However, in other areas of the Transylvanian Basin, 204	  
dark soils were overlain by Luvisols, typical of nemoral forests, about 5000 cal yr BP (Timar 205	  
et al., 2010) when wetter climatic conditions prevailed, whilst the current vegetation is 206	  
predominantly grassland. Grassland occurrence on soils typically favouring forests may be 207	  
explained by the prevalence of open woodlands throughout the Holocene, allowing the long-208	  
term persistence of dark soil, rather than the post-deforestation formation of this soil type. 209	  
Forest soils occur extremely rarely on chernozems developed on loess substrates in the 210	  
Hungarian Plain therefore suggesting the long-term existence of steppe grasslands (Máté 211	  
1957, Molnár 2010). Indeed, the continuous dominance of grasslands from the Late 212	  
Pleistocene on loess deposits in the southern Carpathian Basin has been recently 213	  
demonstrated on the basis of n-alkane biomarkers (Marković et al., 2018). Thus, pedological 214	  
evidence from chernozems, including those developed on loess, shows that chernozems 215	  
existence under open or semi-open vegetation. 216	  
 217	  
4. Drivers of grassland persistence during the Holocene 218	  
4.1 Climate conditions  219	  
Proxy-based and climate simulations indicate warmer-than-present summer temperatures, 220	  
lower precipitation and soil moisture, and greater seasonality in the early Holocene (11700-221	  
9000 cal yr BP) in Central and Eastern Europe at the time of maximum grassland extent 222	  
(Feurdean et al., 2013; 2014; Heiri et al., 2014). Palaeoclimatological records show a decline 223	  
in temperatures in this region from approximately 9000 to 4500 cal yr BP (Heiri et al., 2015; 224	  
Tóth et al., 2015; Hajkova et al., 2016). Climate simulations are consistent with this pattern of 225	  
mid Holocene cooling, but also marked precipitation and soil moisture increases in the mid 226	  
latitudes in Europe (Feurdean et al., 2013). Palaeoecological reconstructions show that 227	  
significant forest expansion occurred in response to cool and moist conditions in Central 228	  
Eastern Europe (Magyari et al., 2010; Feurdean et al., 2015; Kuneš et al., 2015; Novenko et 229	  
al., 2016; Pokorný et al. 2015; Jamrichová et al., 2017; Moskal-del Hoyo et al., 2018). 230	  
Therefore, both proxy and modelled palaeoclimatic and palaeoecological evidence from the 231	  
lowlands of Central Eastern Europe clearly show that grasslands were most extensive during 232	  
the warm and dry climatic conditions, with prolonged droughts, of the early Holocene 233	  
(11,700-9000 cal yr BP) and became restricted under wetter conditions during the mid 234	  
Holocene (9000-4500 cal yr BP; Fig. 2). This illustrates the stronger competitive advantage 235	  
of grasslands over trees when resources are limited i.e., lower moisture availability and 236	  
prolonged droughts. 237	  
 238	  
4.2 Fire  239	  
The role of fire as one of the main drivers of the rise in grassy ecosystem during the Miocene 240	  
has been been advocated (Osborne and Behling, 2006; Strömberg, 2011) and confirmed by 241	  
fossil records from C4 dominated grasslands in Africa (Hoetzel et al., 2013). This is not 242	  
surprising as dominant grassland species have fine fuels with rapid curing and fast regrowth 243	  
rates as well as perennating buds near or below the soil surface; adaptations that ensure 244	  
regeneration after disturbances that damage the above-ground parts of the plant (He and 245	  
Lamont, 2018). Thus, whilst grass and herbs can withstand frequent fire, this shift in fire 246	  
regime may have harmed previously dominant tree species adapted to infrequent fire (He 247	  
and Lamont, 2018). Although, short-term, field-based burning experiments in Hungary found 248	  
conflicting results about the effect of fire on grassland biodiversity (Valkó et al., 2014, 2018b), 249	  
controlled laboratory and small-scale field experiments examining the effect of fire on seeds 250	  
found a predominantly negative effect of fire on seed germination in grassland species, 251	  
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however, some positive effects (Fabaceae) also emerged (Ruprecht et al., 2013; 2015). 252	  
Disturbances by fire have recently been considered essential for increased grassland 253	  
competitive advantage over trees during the Holocene in Central Eastern Europe (Magyari et 254	  
al., 2010; Feurdean et al., 2015). For example, a positive effect of frequent fires on the 255	  
competitive advantage of grasses over trees and, by this means, on the extent of grassland 256	  
in Transylvania, Romania, has been inferred from sedimentary charcoal particles and pollen 257	  
(Feurdean et al., 2013). On the contrary, the decline in fire frequency during the mid 258	  
Holocene has been shown to be detrimental for grassland extent. The significance of global 259	  
fire activity in grassy biomes during the early and late Holocene, based on charcoal datasets, 260	  
has recently been emphasised by Leys et al (2018). Taken together, neo- and 261	  
palaeoecogical evidence indicate that fire may have had a more important role in the shifts 262	  
between forest and grassland, and in grassland maintenance, than previously thought. 263	  
Exploring to what extent temperate grasslands are associated with frequent fires and which 264	  
grassland species/communities are most resilient or benefit mostly from fire could be useful 265	  
for the enhancement of management practices, i.e., preventing excessive dominance by 266	  
competitor grass species as well as the succession towards shrublands and forests. 267	  

 268	  
4.3 Herbivores  269	  
Large herbivorous mammals influence the physiology and growth of plants and are 270	  
considered ecological keystones in maintaining tree–grass coexistence (Crawley, 1983; 271	  
Sankaran et al., 2005). Released from megaherbivore pressure and with a change in climate 272	  
at the Pleistocene-Holocene boundary, European lowlands witnessed substantial forest 273	  
regeneration and a reduction in vegetation openness (Vera, 2000; Svenning, 2002). 274	  
Megaherbivore extinction may also have had a cascading effect on the population size and 275	  
diversity of small mammals dependent on vegetation openness and indirectly on the fire 276	  
regime (Gill et al., 2014). However, comparatively, little attention has been given to the effect 277	  
of the declining population size or extinction of wild herbivores, or the subsequent role of 278	  
livestock, on landscape structure during the mid to late Holocene. We know from 279	  
palaeontological and archaeozoological records in the Carpathian Basin that several large 280	  
herbivores i.e., Alces alces (Eurasian Elk), Bison bonasus (European Bison), Dama dama 281	  
(Eurasian Fallow Deer), Equus ferus subsp. gmelini (Wild Horse) and Equus hemionus 282	  
(Asiatic Wild Ass) became discontinuously present from the mid Holocene, i.e. 8000 cal yr 283	  
BP and that many became extinct by 4000 cal yr BP (Németh et al., 2017; Bejenaru et al., 284	  
2018). In contrast, livestock numbers increased from 6500 cal yr BP (Schumacher et al., 285	  
2016). Domestic livestock could prevent forest encroachment in the absence or with a low 286	  
density of wild herbivores. Domestic animals can replace wild herbivores as dispersal agents 287	  
(Bruun and Fritzbøger, 2002; Cosyns et al., 2005), however, their movement is limited by 288	  
agricultural practices. Combined fossil records of fauna, pollen and coprophilous fungi that 289	  
reproduce exclusively on animal dung (Sporormiella spp., Sordaria spp., Podospora spp.) 290	  
can provide means of assessing the effects of herbivores on grassland dynamics and also 291	  
the timing of the shift in influence from grazing by wild herbivores to livestock grazing (Gill et 292	  
al., 2009). Such records are still scant in Europe, but the existing studies generally show the 293	  
increasing effects of grazing by domestic livestock from 5000 cal yr BP (Schumacher et al., 294	  
2016). Understanding the responses of grasslands to different grazing animals (body size, 295	  
grazing intensity and height, foraging strategy and forage selectivity) will be essential in the 296	  
development of future grassland management strategies as various forms of livestock 297	  
grazing have been proposed to simulate the effects of grazing and browsing by wild 298	  
herbivores (Poschlod and WallisDeVries, 2002; Bakker et al., 2004; Tóth et al., 2016; 299	  
Poschlod, 2017).  300	  

 301	  
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4.4. Early human impact counteracted the encroachment of forest onto primary 302	  
grasslands 303	  
As the increase in forest cover from 8000 cal yr BP coincided with the spread of Neolithic 304	  
culture across South Eastern Europe (Bogaard et al., 2004; Kreuz 2008), a critical question 305	  
in respect to grassland extent is whether anthropogenic impacts could have counteracted the 306	  
climate-driven development of a closed forest (Pokorný et al., 2015). Archaeological datasets 307	  
from this part of Europe indicate that Neolithic settlements tended to be established in open 308	  
landscapes and that field sizes were small (Moskal-del Hoyo et al., 2013; Chapman, 2017; 309	  
Marinova and Ntinou, 2017). As people first settled in naturally open landscapes, this 310	  
tendency could explain the apparent lack of major deforestation at this time in the pollen 311	  
records from Central Eastern Europe (Fig. 2). Fire activity was naturally high during the early 312	  
Holocene (Magyari et al., 2010; Feurdean et al., 2013), and humans may have taken 313	  
advantage of wildfires to extend their agro-pastoral activities into freshly burned habitats. In 314	  
agreement with Pokorný et al. (2015) we hypothesise that early anthropogenic land 315	  
management may have slowed, or partially arrested, the development of closed forest 316	  
favoured by the wetter climatic conditions of the mid Holocene at locations with low biomass 317	  
productivity, contributing to the maintenance of landscape openness.   318	  
 319	  
4.5. Semi-natural grasslands replacing forests: when and how? 320	  
Individual pollen records, as well as large-scale quantitative vegetation reconstructions from 321	  
Central Eastern Europe, show that the level of anthropogenic impact on forest remained low 322	  
until about 6000-5000 cal yr BP (Magyari et al., 2010; Feurdean et al., 2015; Kuneš et al., 323	  
2015; Jamrichová et al., 2017; Fig. 2). Modelled vegetation and land use (arable and pasture 324	  
cover) changes across Europe suggest that open areas expanded gradually from previously 325	  
cleared forest after ca. 6000 cal yr BP (Kaplan et al., 2017). A noticeable increase in the 326	  
abundance and richness of grassland along with the decline in total forest cover but increase 327	  
for Quercus, a tree taxon typical for woodland and woody pasture, in Central Eastern Europe 328	  
occurred from 4700-3500 cal yr BP onwards (Jamrichová et al., 2017). This demonstrates a 329	  
growing anthropogenic role in the extension of grasslands and the formation of open 330	  
woodlands. These grasslands belong to the so-called semi-natural grasslands that 331	  
developed from forests and are maintained by land management (Pärtel et al., 2007; Pereira 332	  
et al., 2017). Technological advances in agriculture and the expansion of urban centres and 333	  
farms from the Late Bronze Age and Iron Age (3500 cal yr BP) have led to both an extension 334	  
and intensification of the land use in Central Europe (Poschold, 2015; Rösch et al., 2016). It 335	  
is therefore not surprising that from this time onwards, the richness and extent of grassland 336	  
has been found to correlate closely with prehistoric settlement density and land management 337	  
(Poschlod and WallisDeVries, 2002; Pärtel et al., 2005; Hajkova et al., 2011; Hejcman et al., 338	  
2013; Poschlod, 2017). Later on i.e. from the 15th to 20th centuries, grassland expansion is 339	  
strongly linked to sheep flock migration. Livestock acted as dispersal vectors and their 340	  
mobility may be one of the reasons that ancient and older semi-natural grasslands may have 341	  
similar species diversity (Poschlod and WallisDeVries, 2002; Molnár et al. 2012; Poschlod, 342	  
2017). The sowing of hayseed and mowing may also have promoted grassland expansion in 343	  
many parts of Europe (Babai and Molnár, 2014). In summary, semi-natural grasslands 344	  
expanded into formerly forested sites and have subsequently been maintained by a variety of 345	  
land management practices including grazing, burning and mowing. 346	  
 347	  
5. A new framework for Holocene grassland persistence; conservation consequences 348	  
We provide a new framework distinguishing three types of biodiversity-rich grasslands in 349	  
Central Eastern Europe. These are: primary grasslands on skeletal and other poor soils 350	  
(primary grasslands I), ancient grasslands maintained by natural and anthropogenic 351	  
disturbances (primary grasslands II), and semi-natural grasslands developed as a result of 352	  
human activities replacing forests (Fig. 3; Table 1). We have identified the reasons for the 353	  
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continuous presence of primary grasslands during the Holocene including both natural i.e. 354	  
climate conditions and soils (primary I), climate and disturbance factors i.e. fire and grazing 355	  
(primary grasslands II). Neolithic people may have first settled in naturally open areas such 356	  
as grasslands or grassland-woodland mosaics arresting the development of a full forest 357	  
cover when the climate became wetter (mid Holocene), indirectly favouring the preservation 358	  
and expansion of grasslands. The intensification of human impact from 4700-3500 cal yr BP 359	  
onwards subsequently lead to considerable extension of semi-natural grassland on formerly 360	  
forested sites. A succession from grassland to forest after the cessation of land management 361	  
(e.g. grazing or burning) is not necessarily a proof against the primary or ancient aspect of 362	  
grasslands, but may indicate the lack of disturbances. Livestock grazing in the late Holocene 363	  
has replaced ancient grazing by megaherbivores prevailing until the early Holocene and that 364	  
by large herbivores throughout the mid Holocene.  365	  
Our findings also reveal misconceptions about the origin of Central Eastern European 366	  
grasslands and open canopy woodlands. The concept of a previously continuous, closed 367	  
forest in extant grassland-rich landscapes where climatic conditions are favourable for forest 368	  
fails to hold true, as grasslands are likely to have been continuously present throughout the 369	  
Holocene. The long-term persistence of grasslands at these locations is probably an 370	  
important reason for one of the highest small-scale species richness, many endemic, 371	  
worldwide in these habitats. Such species-rich plant communities can require millennia to 372	  
develop and only well-connected grassland patches can support genetically diverse plant 373	  
populations. These findings challenge the commonly held view that conservation activities 374	  
should primarily focus on the protection of forests in many areas of Central Eastern Europe. 375	  
Anthropogenic impacts tend to focus on forest clearance, but this perspective paper 376	  
highlights that conservationists and land managers need to carefully consider that, in many 377	  
cases, it is not primary forests that hold the highest biodiversity. Further, human-made, or 378	  
managed environments, such as extensively managed grasslands, are long-term landscape 379	  
features, contain unique plant and animal communities, and provide important ecosystems 380	  
services. Our findings support the recent wider acceptance of the notion that people and 381	  
nature should not be separated in the societal discourse of environmental science (Mace 382	  
2014). Finally, we advocate the need for a more detailed understanding of the role of 383	  
disturbances in grassland-forest dynamics, to avoid the overly simplistic assumption that 384	  
sparse tree cover is evidence of past deforestation. Fossil records provide such data and the 385	  
routine incorporation of palaeoecological investigations into environmental management is a 386	  
key step in developing science-based evidence for the conservation of the biodiversity of 387	  
grasslands. Thus, our regional case study supports the advocacy of Willis et al. (2010), 388	  
Barnosky et al. (2017) and Whitlock et al. (2018) for merging palaeobiology and conservation 389	  
biology as well as an appreciation of the dynamic history of species and ecosystems, 390	  
including the role of humans. 391	  
 392	  

393	  
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Figures captions 393	  
 394	  
Figure 1. Location of the study area in Europe (A) and the distribution of the main vegetation 395	  
types in Central Eastern Europe based on the potential natural vegetation map of Europe (B; 396	  
Bohn et al., 2003). Colour symbols show location of various types of fossil records extracted 397	  
from literature (Table 2 and S1) indicating either continuous grassland presence throughout 398	  
the Holocene or during the afforestation phases of the mid Holocene (9000-4000 cal yr BP). 399	  
These fossil records reveal that grasslands were continuously present throughout the 400	  
Holocene in places where potential natural vegetation has been assumed to be forest.  401	  

 402	  



 10	  

Figure 2. Pollen based reconstruction of forest (green) versus open land cover (yellow) from 403	  
Central Eastern Europe during the Holocene using the pseudobiomisation method (Fyfe et 404	  
al., 2015). Cumulative land cover record was constructed by spatially aggregating 96 pollen 405	  
records extracted from the Pangaea Database and distributed across the region shown in 406	  
Fig.1 and Fig. S1. Forest cover includes both broadleaf and conifer trees, whereas open land 407	  
cover includes pastures/natural grasslands, and arable/disturbed land. Geological and 408	  
archaeological periods as well as the predominance of each grassland type throughout the 409	  
Holocene are also highlighted. Trends in simulated growing season temperature and 410	  
precipitation for Lake Stiucii, Romania after Feurdean et al. (2015).  411	  
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Figure 3. The effect of climate, soils and disturbances by fire, herbivores and humans on the 427	  
three types of grasslands and forest. Blue line denote a positive effect, red line a negative 428	  
effect and grey both effects.  429	  
 430	  
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Table S1. Location of sites extracted from the literature and used to construct Figure 1. 713	  
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Table 1. Species-rich grassland types 715	  
Grassland type    Characteristics 716	  
Primary grassland I    Natural grasslands on skeletal and other poor soils with  717	  
     moisture deficit 718	  
 719	  
Primary grassland II  Ancient grasslands formed and maintained mainly by 720	  

climate conditions and natural fires, herbivores and, 721	  
later, also influenced by anthropogenic disturbances  722	  

 723	  
Semi-natural grassland Secondary grasslands formed and maintained by 724	  

anthropogenic disturbances (deforestation, livestock 725	  
grazing, cultivation, use of fire) in areas suitable for 726	  
forests during the late Holocene 727	  
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