
Ensure the protection, sustainable management and restoration of natural GSRs in adaptation plans
and Nationally Determined Contributions (NDCs)
Protect natural GSRs from land use changes such as inappropriate afforestation and agricultural
intensification, which lead to net losses of carbon stocks, biodiversity and other ecosystem services
Align UNFCCC actions on GSRs with the CBD and UNCCD, including through National Biodiversity
Strategies and Action Plans (NBSAPs) and Land Degradation Neutrality (LDN) targets.

Key Recommendations:
Grasslands, savannahs and rangelands (GSRs) are huge carbon stores, vital global resources for
biodiversity, food and freshwater security, and offer many ecosystem services to support climate
mitigation and adaptation. High biodiversity GSRs generally have the greatest mitigation and adaptation
benefits. Parties to the UNFCCC are therefore urged to:

The companion document "Grassland Savannah Rangeland Case Studies of Significance for Carbon and
Biodiversity" is also available and provides several examples giving context to the state of GSR carbon
studies and projects around the world.

This is a jointly produced briefing from WWF-International and Plantlife International for country
delegates at COP27.
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GSRs sequester carbon,  with the large majority stored below ground in
roots and soil organic carbon (SOC).  Their huge extent means their carbon
stocks are vast: rangelands alone account for 54% of global land;  recent
figures for grasslands suggest they store between 25-35% of terrestrial
carbon,      90% of it underground.  Statistics are hampered by lack of
agreement about where GSRs merge into forests and wetlands,  and by
variations in sequestration and storage between GSR types.        Whilst

GSRs store less carbon per area than forests, their underground stocks are
considered safer in areas of high fire or future logging risks.

 
GSRs are also essential but under-valued    assets in adapting to present

and future climate change. Healthy grassland ecosystems reduce soil
erosion, dust storms and desertification,   and protect against flooding.  
 GSRs aid water security through protection of surface and groundwater

sources,   support food security and livelihoods through livestock
production, pollinators and wild foods,   and maintain a wide range of

recreational,   cultural and aesthetic benefits.
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GSR ecosystems can play a key role in government responses to
climate change under the UNFCCC, both in Nationally Determined
Contributions (NDCs) and in adaptation plans.

Grasslands, savannahs and rangelands contain huge
carbon stores to mitigate climate change and 
provide ecosystem services that help adapt to a
changing climate

Benefits can be achieved both by maintaining or restoring natural, old-growth
grasslands,   and by changing agricultural practices and livestock management,   such as
through wider use of silvopastoral systems.    However, at present few countries include
GSRs in their approaches. Analysis in 2019 found only 10% of NDCs mentioned
grasslands, with most of these being in Africa.
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The dense underground root
structure of grasslands is

how they store and fix most
of their carbon below

ground 
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The temperate grasslands of
Russia's far east; the least
protected terrestrial biome,
90% of temperate grasslands
have been converted to
agriculture and settlement.

But these ecosystems are increasingly vulnerable and
threatened
GSR carbon stores require effective management to prevent emissions from soil
disturbance, land-use change and degradation, including from overgrazing or
encroachment of woody biomass or invasive grasses.   Some non-native, invasive and
fire-adapted grasses increase fire risk in ecosystems not adapted to fire, releasing more
carbon.   Yet natural grassland is often undervalued in conservation policies;  
 indigenous temperate grasslands are the least protected terrestrial biome,   90% of
temperate grasslands have already been converted to agriculture and urban areas, and
less than 1% of the remnants are currently protected from land development.   Climate
change itself can exacerbate these losses. For instance, increased variation in
precipitation in dryland areas is predicted to decrease grassland productivity    and
cause longer, more severe droughts. This can reduce soil carbon sequestration due to
decreased plant litter inputs and increase CO2 emissions from soils. Elevated CO2 also
favours woody species, exacerbating woody encroachment. Increased grassland plant
species diversity can help to mitigate many of the effects mentioned above.
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Ironically, some climate change mitigation strategies can
themselves drive biodiversity and carbon losses from GSRs

Increasing native tree cover is essential for carbon sequestration and
conservation, but must be guided by the principle of ’right tree, right place’ and
not achieved at the expense of other carbon and species-rich habitats.

Forest conservation actions have at times displaced land use change into biodiverse
GSRs, e.g., in Brazil,   China,   and the Congo Basin.   Degraded grasslands, savannahs,
and natural grasslands mistaken for degraded forests have been inappropriately planted
with trees.   Such tree planting destroys underground carbon stocks and grassland
community composition which may take centuries to recover.   Problems could be
aggravated by efforts to meet UNFCCC goals,   if forest “restoration” occurs in natural
or semi-natural grasslands    or savannahs,   with important flora and fauna.   Forest
restoration targets of the Bonn Challenge have encouraged some governments to focus
on quantity of trees rather than quality of forests.   Identification of suitable
reforestation areas, e.g., by the World Resources Institute,   have been criticised as
including important grassland areas.  
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A specific focus on grasslands, savannahs and rangelands in NDCs and
national adaptation plans is therefore now an urgent priority.

                         especially vulnerable sites with more-or-less irrecoverable carbon.   
Restoration actions focusing on building back old-growth characteristics can
facilitate further carbon sequestration and storage in GSRs. These may include
suppressing invasives and woody encroachment, vegetative propagation,
establishing bud banks and below-ground organs,   temporary grazing exclusion,       
reduced livestock grazing,   rotational grazing,   changed cropping patterns,
enhanced grassland biodiversity and early season burning.   Sustainable
management reduces emissions of methane, another greenhouse gas.   GSR
management and restoration also reverses biodiversity decline, protects ecosystem
services, e.g., reduced soil erosion,   while also preserving the livelihoods and
cultural traditions for the 800 million people    living in GSRs. Many conservation
strategies can be integrated with traditional practices, such as where floristic
quality, richness and diversity are increased by sustainable grazing management.  

Due to their existing high underground carbon stocks, protection of the
remaining ancient grasslands is a first priority for GSR climate 
mitigation,
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A combination of protection, sustainable
management and restoration can maximise the
potential of GSRs in climate change strategies
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Climate change and biodiversity loss must be
tackled simultaneously in GSRs
Natural GSRs support high levels of biodiversity, including many threatened
species. There is also evidence that biodiverse GSRs have greater resilience in the
face of environmental change.       Restoration of GSR biodiversity accelerates soil
carbon sequestration in some conditions.       Protection of SOC is therefore most
effective if combined with biodiversity conservation,       creating synergy between
aims of the Convention on Biological Diversity and the UNFCCC. Restoring native
wildlife, in particular re-establishing grazing herds, can help to: maintain the
light-absorbing albedo effect of GSRs and their potential as carbon sinks;
maintain peat soils under permafrost; and restrict above ground woody biomass to
reduce carbon released from natural burning.   Research from the Serengeti-Mara
found an increase of 100,000 wildebeest translated to approximately 10% less
area burned.

Climate change mitigation therefore needs to be aligned with other
objectives linked to biodiversity.
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A narrow focus on carbon can undermine biodiversity.   Research in the Brazilian
Cerrado found that artificially suppressing fire beyond natural levels increased
carbon sequestration by allowing more woody growth, but caused a decline in
savannah plant and ant species.   Other research shows that prioritising both
biodiversity and soil carbon can achieve up to 90% of each objective, triple
conservation gains and halve implementation costs.

Knowledge of co-benefit areas with high biodiversity and high carbon can
help in the identification of NDCs.
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